''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
#
# Unit Test Script
# Module Name: PRV_Steering
# Author: Hanspeter Schaub
# Creation Date: December 18, 2015
#
import pytest
import sys, os, inspect
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
import ctypes
import math
import logging
# Import all of the modules that we are going to call in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.simulation.alg_contain import alg_contain
# general support files with common unit test functions
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport
import matplotlib.pyplot as plt
# import the module that is to be tested
from Basilisk.fswAlgorithms.PRV_Steering import PRV_Steering
from Basilisk.fswAlgorithms.rateServoFullNonlinear import rateServoFullNonlinear
# import module(s) that creates the needed input message declaration
from Basilisk.fswAlgorithms.fswMessages import fswMessages
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("simCase", [0, 1])
def test_PRV_Steering(show_plots, simCase): # update "subModule" in this function name to reflect the module name
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = subModuleTestFunction(show_plots, simCase)
assert testResults < 1, testMessage
def subModuleTestFunction(show_plots, simCase):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# this create a fresh and consistent simulation environment for each test run
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = PRV_Steering.PRV_SteeringConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "PRV_Steering"
servoConfig = rateServoFullNonlinear.rateServoFullNonlinearConfig()
servoWrap = unitTestSim.setModelDataWrap(servoConfig)
servoWrap.ModelTag = "rate_servo"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
unitTestSim.AddModelToTask(unitTaskName, servoWrap, servoConfig)
# Initialize the test module configuration data
moduleConfig.inputGuidName = "inputGuidName"
moduleConfig.outputDataName = "rate_steering"
servoConfig.inputGuidName = moduleConfig.inputGuidName
servoConfig.vehConfigInMsgName = "vehicleConfigName"
servoConfig.rwParamsInMsgName = "rwa_config_data_parsed"
servoConfig.rwAvailInMsgName = "rw_availability"
servoConfig.inputRWSpeedsName = "reactionwheel_speeds"
servoConfig.inputRateSteeringName = moduleConfig.outputDataName
servoConfig.outputDataName = "outputName"
moduleConfig.K1 = 0.15
moduleConfig.K3 = 1.0
moduleConfig.omega_max = 1.5*macros.D2R
servoConfig.Ki = 0.01
servoConfig.P = 150.0
servoConfig.integralLimit = 2./servoConfig.Ki * 0.1;
servoConfig.knownTorquePntB_B = [0., 0., 0.]
# Create input message and size it because the regular creator of that message
# is not part of the test.
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = fswMessages.AttGuidFswMsg() # Create a structure for the input message
inputMessageSize = guidCmdData.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.inputGuidName,
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
sigma_BR = []
if simCase == 0:
sigma_BR = np.array([0.3, -0.5, 0.7])
if simCase == 1:
sigma_BR = np.array([0, 0, 0])
guidCmdData.sigma_BR = sigma_BR
omega_BR_B = np.array([0.010, -0.020, 0.015])
guidCmdData.omega_BR_B = omega_BR_B
omega_RN_B = np.array([-0.02, -0.01, 0.005])
guidCmdData.omega_RN_B = omega_RN_B
domega_RN_B = np.array([0.0002, 0.0003, 0.0001])
guidCmdData.domega_RN_B = domega_RN_B
unitTestSim.TotalSim.WriteMessageData(servoConfig.inputGuidName, inputMessageSize,
0, guidCmdData)
# vehicleConfigData Message:
vehicleConfigOut = fswMessages.VehicleConfigFswMsg()
inputMessageSize = vehicleConfigOut.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.vehConfigInMsgName,
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
I = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
vehicleConfigOut.ISCPntB_B = I
unitTestSim.TotalSim.WriteMessageData(servoConfig.vehConfigInMsgName,
inputMessageSize,
0, vehicleConfigOut)
# wheelSpeeds Message
rwSpeedMessage = simFswInterfaceMessages.RWSpeedIntMsg()
inputMessageSize = rwSpeedMessage.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName,
servoConfig.inputRWSpeedsName,
inputMessageSize,
2) # number of buffers (leave at 2 as default, don't make zero)
Omega = [10.0, 25.0, 50.0, 100.0]
rwSpeedMessage.wheelSpeeds = Omega
unitTestSim.TotalSim.WriteMessageData(servoConfig.inputRWSpeedsName,
inputMessageSize,
0,
rwSpeedMessage)
# wheelConfigData message
def writeMsgInWheelConfiguration():
rwConfigParams = fswMessages.RWArrayConfigFswMsg()
inputMessageSize = rwConfigParams.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.rwParamsInMsgName,
inputMessageSize, 2) # number of buffers (leave at 2 as default)
rwConfigParams.GsMatrix_B = [
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0
]
rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1]
rwConfigParams.numRW = 4
unitTestSim.TotalSim.WriteMessageData(servoConfig.rwParamsInMsgName, inputMessageSize,
0, rwConfigParams)
if len(servoConfig.rwParamsInMsgName) > 0:
writeMsgInWheelConfiguration()
# wheelAvailability message
def writeMsgInWheelAvailability():
rwAvailabilityMessage = rateServoFullNonlinear.RWAvailabilityFswMsg()
inputMessageSize = rwAvailabilityMessage.getStructSize()
unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.rwAvailInMsgName,
inputMessageSize, 2) # number of buffers (leave at 2 as default)
avail = [rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE]
rwAvailabilityMessage.wheelAvailability = avail
unitTestSim.TotalSim.WriteMessageData(servoConfig.rwAvailInMsgName, inputMessageSize,
0, rwAvailabilityMessage)
if len(servoConfig.rwAvailInMsgName) > 0:
writeMsgInWheelAvailability()
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(servoConfig.outputDataName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
servoWrap.Reset(1) # this module reset function needs a time input (in NanoSeconds)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
moduleOutputName = "torqueRequestBody"
moduleOutput = unitTestSim.pullMessageLogData(servoConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
print('\n Lr = ', moduleOutput[:, 1:])
# set the filtered output truth states
trueVector = []
if simCase == 0:
trueVector = [
[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084]
,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084]
]
if simCase == 1:
trueVector = [
[-1.39, 3.79, -1.39]
,[-1.39, 3.79, -1.39]
,[-1.39005, 3.7901, -1.390075]
,[-1.39, 3.79, -1.39]
,[-1.39005, 3.7901, -1.390075]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i,0]*macros.NANO2SEC) + "sec\n")
## plot a sample variable
#plt.figure(1)
#plt.plot(dummyState[:,0]*macros.NANO2SEC, dummyState[:,1], label='Sample Variable')
#plt.legend(loc='upper left')
#plt.xlabel('Time [s]')
#plt.ylabel('Variable Description [unit]')
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
if show_plots:
plt.show()
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a stand-along python scripts
# authmatically executes the runUnitTest() method
#
if __name__ == "__main__":
test_PRV_Steering(True, simCase=1)