Source code for test_MRP_steeringInt

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
import sys, os, inspect
import numpy as np
import pytest







from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms.MRP_Steering import MRP_Steering  # import the module that is to be tested
from Basilisk.fswAlgorithms.rateServoFullNonlinear import rateServoFullNonlinear
from Basilisk.fswAlgorithms.fswMessages import fswMessages
from Basilisk.simulation.simFswInterfaceMessages import simFswInterfaceMessages
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_

[docs]@pytest.mark.parametrize("K1", [0.15, 0]) @pytest.mark.parametrize("K3", [1, 0]) @pytest.mark.parametrize("omegaMax", [1.5 * macros.D2R, 0.001]) def test_mrp_steering_tracking(show_plots,K1, K3, omegaMax): "module integrated test" [testResults, testMessage] = mrp_steering_tracking(show_plots,K1, K3, omegaMax) assert testResults < 1, testMessage
def mrp_steering_tracking(show_plots,K1, K3, omegaMax): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = MRP_Steering.MRP_SteeringConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "MRP_Steering" servoConfig = rateServoFullNonlinear.rateServoFullNonlinearConfig() servoWrap = unitTestSim.setModelDataWrap(servoConfig) servoWrap.ModelTag = "rate_servo" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) unitTestSim.AddModelToTask(unitTaskName, servoWrap, servoConfig) # Initialize the test module configuration data moduleConfig.inputGuidName = "inputGuidName" moduleConfig.outputDataName = "rate_steering" servoConfig.inputGuidName = moduleConfig.inputGuidName servoConfig.vehConfigInMsgName = "vehicleConfigName" servoConfig.rwParamsInMsgName = "rwa_config_data_parsed" servoConfig.rwAvailInMsgName = "rw_availability" servoConfig.inputRWSpeedsName = "reactionwheel_speeds" servoConfig.inputRateSteeringName = moduleConfig.outputDataName servoConfig.outputDataName = "outputName" moduleConfig.K1 = K1 moduleConfig.K3 = K3 moduleConfig.omega_max = omegaMax servoConfig.Ki = 0.01 servoConfig.P = 150.0 servoConfig.integralLimit = 2. / servoConfig.Ki * 0.1 servoConfig.knownTorquePntB_B = [0., 0., 0.] # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = fswMessages.AttGuidFswMsg() # Create a structure for the input message inputMessageSize = guidCmdData.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputGuidName, inputMessageSize, 2)# number of buffers (leave at 2 as default, don't make zero) sigma_BR = np.array([0.3, -0.5, 0.7]) guidCmdData.sigma_BR = sigma_BR omega_BR_B = np.array([0.010, -0.020, 0.015]) guidCmdData.omega_BR_B = omega_BR_B omega_RN_B = np.array([-0.02, -0.01, 0.005]) guidCmdData.omega_RN_B = omega_RN_B domega_RN_B = np.array([0.0002, 0.0003, 0.0001]) guidCmdData.domega_RN_B = domega_RN_B unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputGuidName, inputMessageSize, 0, guidCmdData) # vehicleConfigData Message: vehicleConfigOut = fswMessages.VehicleConfigFswMsg() inputMessageSize = vehicleConfigOut.getStructSize() # 18 doubles + 1 32bit integer unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.vehConfigInMsgName, inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero) I = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] vehicleConfigOut.ISCPntB_B = I unitTestSim.TotalSim.WriteMessageData(servoConfig.vehConfigInMsgName, inputMessageSize, 0, vehicleConfigOut) # wheelSpeeds Message rwSpeedMessage = simFswInterfaceMessages.RWSpeedIntMsg() inputMessageSize = rwSpeedMessage.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.inputRWSpeedsName, inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero) Omega = [10.0, 25.0, 50.0, 100.0] rwSpeedMessage.wheelSpeeds = Omega unitTestSim.TotalSim.WriteMessageData(servoConfig.inputRWSpeedsName, inputMessageSize, 0, rwSpeedMessage) # wheelConfigData message jsList = [] GsMatrix_B = [] def writeMsgInWheelConfiguration(): rwConfigParams = fswMessages.RWArrayConfigFswMsg() inputMessageSize = rwConfigParams.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.rwParamsInMsgName, inputMessageSize, 2) # number of buffers (leave at 2 as default) rwConfigParams.GsMatrix_B = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258 ] rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1] rwConfigParams.numRW = 4 unitTestSim.TotalSim.WriteMessageData(servoConfig.rwParamsInMsgName, inputMessageSize, 0, rwConfigParams) jsList = rwConfigParams.JsList GsMatrix_B = rwConfigParams.GsMatrix_B return jsList, GsMatrix_B if len(servoConfig.rwParamsInMsgName) > 0: writeMsgInWheelConfiguration() # wheelAvailability message rwAvailList = [] #rwAvailabilityMessage = fswMessages.RWAvailabilityFswMsg() def writeMsgInWheelAvailability(): rwAvailabilityMessage = rateServoFullNonlinear.RWAvailabilityFswMsg() inputMessageSize = rwAvailabilityMessage.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, servoConfig.rwAvailInMsgName, inputMessageSize, 2) # number of buffers (leave at 2 as default) rwAvail = [rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE, rateServoFullNonlinear.AVAILABLE] rwAvailabilityMessage.wheelAvailability = rwAvail unitTestSim.TotalSim.WriteMessageData(servoConfig.rwAvailInMsgName, inputMessageSize, 0, rwAvailabilityMessage) rwAvailList.append(rwAvail) return rwAvailList if len(servoConfig.rwAvailInMsgName) > 0: writeMsgInWheelAvailability() # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(servoConfig.outputDataName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() servoWrap.Reset(1) # this module reset function needs a time input (in NanoSeconds) unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) moduleOutputName = "torqueRequestBody" moduleOutput = unitTestSim.pullMessageLogData(servoConfig.outputDataName + '.' + moduleOutputName, list(range(3))) # Compute true values trueVals = findTrueTorques(moduleConfig, servoConfig, guidCmdData, rwSpeedMessage, vehicleConfigOut, rwAvailList) # set the filtered output truth states # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(trueVals)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVals[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[i, 0] * macros.NANO2SEC) + "sec \n") print(moduleOutput) # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures if show_plots: plt.show() # print out success message if no error were found if testFailCount == 0: print("PASSED: " + moduleWrap.ModelTag) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def findTrueValues(guidCmdData,moduleConfig): omegaMax = moduleConfig.omega_max sigma = np.asarray(guidCmdData.sigma_BR) K1 = np.asarray(moduleConfig.K1) K3 = np.asarray(moduleConfig.K3) Bmat = RigidBodyKinematics.BmatMRP(sigma) omegaAst = []#np.asarray([0, 0, 0]) omegaAst_P = [] for i in range(len(sigma)): steerRate = -1*(2*omegaMax/np.pi)*np.arctan((K1*sigma[i]+K3*sigma[i]*sigma[i]*sigma[i])*np.pi/(2*omegaMax)) omegaAst.append(steerRate) #print omegaAst if 1:#moduleConfig.ignoreOuterLoopFeedforward: #should be "if not" sigmaP = 0.25*Bmat.dot(omegaAst) for i in range(len(sigma)): omegaAstRate = (K1+3*K3*sigma[i]**2)/(1+((K1*sigma[i]+K3*sigma[i]**3)**2)*(np.pi/(2*omegaMax))**2)*sigmaP[i] omegaAst_P.append(-omegaAstRate) else: omegaAst_P = np.asarray([0, 0, 0]) return omegaAst, omegaAst_P def findTrueTorques(moduleConfig,servoConfig, guidCmdData,rwSpeedMessage,vehicleConfigOut, rwAvailMsg): Lr = [] #Read in variables numRW = servoConfig.rwConfigParams.numRW L = np.asarray(servoConfig.knownTorquePntB_B) steps = [0, 0, .5, 0, .5] omega_BR_B = np.asarray(guidCmdData.omega_BR_B) omega_RN_B = np.asarray(guidCmdData.omega_RN_B) omega_BN_B = omega_BR_B + omega_RN_B #find body rate domega_RN_B = np.asarray(guidCmdData.domega_RN_B) omega_BastR_B, omegap_BastR_B = findTrueValues(guidCmdData, moduleConfig) omega_BastN_B = omega_BastR_B+omega_RN_B omega_BBast_B = omega_BN_B - omega_BastN_B Isc = np.asarray(vehicleConfigOut.ISCPntB_B) Isc = np.reshape(Isc, (3, 3)) Ki = servoConfig.Ki P = servoConfig.P jsVec = servoConfig.rwConfigParams.JsList[0:numRW] #GsMatrix_B_array = np.asarray(GsMatrix) GsMatrix = (servoConfig.rwConfigParams.GsMatrix_B) GsMatrix_B_array = np.reshape(GsMatrix[0:numRW * 3], (numRW, 3)) #Compute toruqes for i in range(len(steps)): dt = steps[i] if dt == 0: zVec = np.asarray([0, 0, 0]) #evaluate integral term if Ki > 0 and abs(servoConfig.integralLimit) > 0: #if integral feedback is on zVec = dt * omega_BBast_B + zVec # z = integral(del_omega) # Make sure each component is less than the integral limit for i in range(3): if zVec[i] > servoConfig.integralLimit: zVec[i] = zVec[i]/abs(zVec[i])*servoConfig.integralLimit else: #integral gain turned off/negative setting zVec = np.asarray([0, 0, 0]) #compute torque Lr Lr0 = Ki * zVec # +K*sigmaBR Lr1 = Lr0 + P * omega_BBast_B # +P*deltaOmega GsHs = np.array([0,0,0]) if numRW > 0: for i in range(numRW): if rwAvailMsg[0][i] == 0: # Make RW availability check GsHs = GsHs + np.dot(GsMatrix_B_array[i, :], jsVec[i]*(np.dot(omega_BN_B, GsMatrix_B_array[i, :]) + rwSpeedMessage.wheelSpeeds[i])) # J_s*(dot(omegaBN_B,Gs_vec)+Omega_wheel) Lr2 = Lr1 - np.cross(omega_BastN_B, (Isc.dot(omega_BN_B)+GsHs)) # - omega_BastN x ([I]omega + [Gs]h_s) Lr3 = Lr2 - Isc.dot(omegap_BastR_B + domega_RN_B - np.cross(omega_BN_B, omega_RN_B)) # - [I](d(omega_B^ast/R)/dt + d(omega_r)/dt - omega x omega_r) Lr4 = Lr3 + L Lr4 = -Lr4 Lr.append(np.ndarray.tolist(Lr4)) return Lr if __name__ == "__main__": test_mrp_steering_tracking(False, 0.15)