''' '''
'''
ISC License
Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import numpy as np
import pytest
import os, inspect
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms.MRP_PD import MRP_PD # import the module that is to be tested
from Basilisk.utilities import macros
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]@pytest.mark.parametrize("setExtTorque", [False, True])
def test_mrp_PD_tracking(show_plots, setExtTorque):
"""Module Unit Test"""
[testResults, testMessage] = mrp_PD_tracking(show_plots, setExtTorque)
assert testResults < 1, testMessage
def mrp_PD_tracking(show_plots, setExtTorque):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_PD_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
moduleConfig = MRP_PD.MRP_PDConfig()
moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
moduleWrap.ModelTag = "MRP_PD"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
# Initialize the test module configuration data
moduleConfig.inputGuidName = "inputGuidName"
moduleConfig.inputVehicleConfigDataName = "vehicleConfigName"
moduleConfig.outputDataName = "outputName"
moduleConfig.K = 0.15
moduleConfig.P = 150.0
if setExtTorque:
moduleConfig.knownTorquePntB_B = [0.1, 0.2, 0.3]
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = MRP_PD.AttGuidFswMsg() # Create a structure for the input message
guidCmdData.sigma_BR = [0.3, -0.5, 0.7]
guidCmdData.omega_BR_B = [0.010, -0.020, 0.015]
guidCmdData.omega_RN_B = [-0.02, -0.01, 0.005]
guidCmdData.domega_RN_B = [0.0002, 0.0003, 0.0001]
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.inputGuidName, guidCmdData)
# vehicleConfig FSW Message:
vehicleConfigOut = MRP_PD.VehicleConfigFswMsg()
vehicleConfigOut.ISCPntB_B = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName,
moduleConfig.inputVehicleConfigDataName, vehicleConfigOut)
# Setup logging on the test module output message so that we get all the writes to it
unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
moduleOutputName = "torqueRequestBody"
moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName,
list(range(3)))
trueVector = [findTrueTorques(moduleConfig, guidCmdData, vehicleConfigOut)]*3
# print trueVector
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy,
"torqueRequestBody", testFailCount, testMessages)
snippentName = "passFail" + str(setExtTorque)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + moduleWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + moduleWrap.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def findTrueTorques(moduleConfig, guidCmdData, vehicleConfigOut):
sigma_BR = np.array(guidCmdData.sigma_BR)
omega_BR_B = np.array(guidCmdData.omega_BR_B)
omega_RN_B = np.array(guidCmdData.omega_RN_B)
domega_RN_B = np.array(guidCmdData.domega_RN_B)
I = np.identity(3)
I[0][0] = vehicleConfigOut.ISCPntB_B[0]
I[1][1] = vehicleConfigOut.ISCPntB_B[4]
I[2][2] = vehicleConfigOut.ISCPntB_B[8]
K = moduleConfig.K
P = moduleConfig.P
L = np.array(moduleConfig.knownTorquePntB_B)
# Begin Method
omega_BN_B = omega_BR_B + omega_RN_B
temp1 = np.dot(I, omega_BN_B)
temp2 = domega_RN_B - np.cross(omega_BN_B, omega_RN_B)
Lr = K * sigma_BR + P * omega_BR_B - np.cross(omega_RN_B, temp1) - np.dot(I, temp2)
Lr += L
Lr *= -1.0
return Lr
if __name__ == "__main__":
test_mrp_PD_tracking(False, False)