Source code for test_MRP_PD

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
import numpy as np
import pytest
import os, inspect
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))







from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
from Basilisk.fswAlgorithms.MRP_PD import MRP_PD  # import the module that is to be tested
from Basilisk.utilities import macros

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_

[docs]@pytest.mark.parametrize("setExtTorque", [False, True]) def test_mrp_PD_tracking(show_plots, setExtTorque): """Module Unit Test""" [testResults, testMessage] = mrp_PD_tracking(show_plots, setExtTorque) assert testResults < 1, testMessage
def mrp_PD_tracking(show_plots, setExtTorque): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_PD_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = MRP_PD.MRP_PDConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "MRP_PD" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.inputGuidName = "inputGuidName" moduleConfig.inputVehicleConfigDataName = "vehicleConfigName" moduleConfig.outputDataName = "outputName" moduleConfig.K = 0.15 moduleConfig.P = 150.0 if setExtTorque: moduleConfig.knownTorquePntB_B = [0.1, 0.2, 0.3] # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = MRP_PD.AttGuidFswMsg() # Create a structure for the input message guidCmdData.sigma_BR = [0.3, -0.5, 0.7] guidCmdData.omega_BR_B = [0.010, -0.020, 0.015] guidCmdData.omega_RN_B = [-0.02, -0.01, 0.005] guidCmdData.domega_RN_B = [0.0002, 0.0003, 0.0001] unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.inputGuidName, guidCmdData) # vehicleConfig FSW Message: vehicleConfigOut = MRP_PD.VehicleConfigFswMsg() vehicleConfigOut.ISCPntB_B = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.inputVehicleConfigDataName, vehicleConfigOut) # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) moduleOutputName = "torqueRequestBody" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(3))) trueVector = [findTrueTorques(moduleConfig, guidCmdData, vehicleConfigOut)]*3 # print trueVector # compare the module results to the truth values accuracy = 1e-12 unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path) testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "torqueRequestBody", testFailCount, testMessages) snippentName = "passFail" + str(setExtTorque) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + moduleWrap.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + moduleWrap.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def findTrueTorques(moduleConfig, guidCmdData, vehicleConfigOut): sigma_BR = np.array(guidCmdData.sigma_BR) omega_BR_B = np.array(guidCmdData.omega_BR_B) omega_RN_B = np.array(guidCmdData.omega_RN_B) domega_RN_B = np.array(guidCmdData.domega_RN_B) I = np.identity(3) I[0][0] = vehicleConfigOut.ISCPntB_B[0] I[1][1] = vehicleConfigOut.ISCPntB_B[4] I[2][2] = vehicleConfigOut.ISCPntB_B[8] K = moduleConfig.K P = moduleConfig.P L = np.array(moduleConfig.knownTorquePntB_B) # Begin Method omega_BN_B = omega_BR_B + omega_RN_B temp1 = np.dot(I, omega_BN_B) temp2 = domega_RN_B - np.cross(omega_BN_B, omega_RN_B) Lr = K * sigma_BR + P * omega_BR_B - np.cross(omega_RN_B, temp1) - np.dot(I, temp2) Lr += L Lr *= -1.0 return Lr if __name__ == "__main__": test_mrp_PD_tracking(False, False)