Source code for scenario_OpNavOD

#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This scenario only performs the orbit determination component of the FSW stack.
It uses Hough Cirlces for image processing.
More details can be found in Chapter 4 of `Thibaud Teil's PhD thesis <http://hanspeterschaub.info/Papers/grads/ThibaudTeil.pdf>`_.

The script can be run at full length by calling::

    python3 scenario_OpNavOD.py

"""

# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
from Basilisk.utilities import RigidBodyKinematics as rbk


# Get current file path
import sys, os, inspect, time, signal, subprocess
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np
from sys import platform

# Import plotting file for your scenario
sys.path.append(path + '/../plotting')
import OpNav_Plotting as BSK_plt

# Create your own scenario child class
[docs]class scenario_OpNav(BSKScenario): """Main Simulation Class""" def __init__(self, masterSim): super(scenario_OpNav, self).__init__(masterSim) self.name = 'scenario_opnav' self.masterSim = masterSim self.filterUse = "bias" #"relOD"
[docs] def configure_initial_conditions(self): print('%s: configure_initial_conditions' % self.name) # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 10000 * 1E3 # meters oe.e = 0.7 oe.i = 40 * macros.D2R oe.Omega = 25. * macros.D2R oe.omega = 190. * macros.D2R oe.f = 1. * macros.D2R # 90 good mu = self.masterSim.get_DynModel().marsGravBody.mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] MRP= [0,0,0] if self.filterUse =="relOD": self.masterSim.get_FswModel().relativeODData.stateInit = rN.tolist() + vN.tolist() if self.filterUse == "bias": self.masterSim.get_FswModel().pixelLineFilterData.stateInit = rN.tolist() + vN.tolist() + bias self.masterSim.get_DynModel().scObject.hub.r_CN_NInit = unitTestSupport.np2EigenVectorXd(rN) # m - r_CN_N self.masterSim.get_DynModel().scObject.hub.v_CN_NInit = unitTestSupport.np2EigenVectorXd(vN) # m/s - v_CN_N self.masterSim.get_DynModel().scObject.hub.sigma_BNInit = [[MRP[0]], [MRP[1]], [MRP[2]]] # sigma_BN_B self.masterSim.get_DynModel().scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # rad/s - omega_BN_B qNoiseIn = np.identity(6) qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3] * 1E-3 * 1E-3 qNoiseIn[3:6, 3:6] = qNoiseIn[3:6, 3:6] * 1E-4 * 1E-4 self.masterSim.get_FswModel().relativeODData.qNoise = qNoiseIn.reshape(36).tolist() self.masterSim.get_FswModel().imageProcessing.noiseSF = 0.5
[docs] def log_outputs(self): print('%s: log_outputs' % self.name) # Dynamics process outputs: log messages below if desired. # FSW process outputs samplingTime = self.masterSim.get_FswModel().processTasksTimeStep # self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().trackingErrorCamData.outputDataName, samplingTime) # self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().trackingErrorData.outputDataName, samplingTime) if self.filterUse == "relOD": self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName, samplingTime) self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName, samplingTime) if self.filterUse == "bias": self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().pixelLineFilterData.filtDataOutMsgName, samplingTime) self.masterSim.TotalSim.logThisMessage(self.masterSim.get_DynModel().scObject.scStateOutMsgName,samplingTime) self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName, samplingTime) return
[docs] def pull_outputs(self, showPlots): print('%s: pull_outputs' % self.name) # Dynamics process outputs: pull log messages below if any ## Spacecraft true states position_N = self.masterSim.pullMessageLogData( self.masterSim.get_DynModel().scObject.scStateOutMsgName + ".r_BN_N", range(3)) velocity_N = self.masterSim.pullMessageLogData( self.masterSim.get_DynModel().scObject.scStateOutMsgName + ".v_BN_N", range(3)) ## Attitude sigma_BN = self.masterSim.pullMessageLogData( self.masterSim.get_DynModel().scObject.scStateOutMsgName + ".sigma_BN", range(3)) ## Image processing circleCenters = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".circlesCenters", range(2*10)) circleRadii = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".circlesRadii", range(10)) validCircle = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".valid", range(1)) if self.filterUse == "bias": NUM_STATES = 9 ## Navigation results navState = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineFilterData.filtDataOutMsgName + ".state", range(NUM_STATES)) navCovar = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineFilterData.filtDataOutMsgName + ".covar", range(NUM_STATES * NUM_STATES)) navPostFits = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineFilterData.filtDataOutMsgName + ".postFitRes", range(NUM_STATES - 3)) if self.filterUse == "relOD": NUM_STATES = 6 ## Navigation results navState = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName + ".state", range(NUM_STATES)) navCovar = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName + ".covar", range(NUM_STATES * NUM_STATES)) navPostFits = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName + ".postFitRes", range(NUM_STATES - 3)) measPos = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName + ".r_BN_N", range(3)) r_C = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName + ".r_BN_C", range(3)) measCovar = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName + ".covar_N", range(3*3)) covar_C = self.masterSim.pullMessageLogData( self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName + ".covar_C", range(3*3)) sigma_CB = self.masterSim.get_DynModel().cameraMRP_CB sizeMM = self.masterSim.get_DynModel().cameraSize sizeOfCam = self.masterSim.get_DynModel().cameraRez focal = self.masterSim.get_DynModel().cameraFocal #in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() stateError = np.zeros([len(position_N[:,0]), NUM_STATES+1]) navCovarLong = np.full([len(position_N[:,0]), 1+NUM_STATES*NUM_STATES], np.nan) navCovarLong[:,0] = np.copy(position_N[:,0]) stateError[:, 0:4] = np.copy(position_N) stateError[:,4:7] = np.copy(velocity_N[:,1:]) pixCovar = np.ones([len(circleCenters[:,0]), 3*3+1]) pixCovar[:,0] = circleCenters[:,0] pixCovar[:,1:]*=np.array([1,0,0,0,1,0,0,0,2]) if self.filterUse == "relOD": measError = np.full([len(measPos[:,0]), 4], np.nan) measError[:,0] = measPos[:,0] measError_C = np.full([len(measPos[:,0]), 5], np.nan) measError_C[:,0] = measPos[:,0] trueRhat_C = np.full([len(circleCenters[:,0]), 4], np.nan) trueR_C = np.full([len(circleCenters[:,0]), 4], np.nan) trueCircles = np.full([len(circleCenters[:,0]), 4], np.nan) trueCircles[:,0] = circleCenters[:,0] trueRhat_C[:,0] = circleCenters[:,0] trueR_C[:,0] = circleCenters[:,0] centerBias = np.copy(circleCenters) radBias = np.copy(circleRadii) switchIdx = 0 Rmars = 3396.19*1E3 for j in range(len(stateError[:, 0])): if stateError[j, 0] in navState[:, 0]: stateError[j, 1:4] -= navState[j - switchIdx, 1:4] stateError[j, 4:] -= navState[j - switchIdx, 4:] else: stateError[j, 1:] = np.full(NUM_STATES, np.nan) switchIdx += 1 for i in range(len(circleCenters[:,0])): if circleCenters[i,1:].any() > 1E-8 or circleCenters[i,1:].any() < -1E-8: if self.filterUse == "bias": centerBias[i,1:3] = np.round(navState[i, 7:9]) radBias[i,1] = np.round(navState[i, -1]) if self.filterUse == "relOD": measError[i, 1:4] = position_N[i +switchIdx, 1:4] - measPos[i, 1:4] measError_C[i, 4] = np.linalg.norm(position_N[i +switchIdx, 1:4]) - np.linalg.norm(r_C[i, 1:4]) measError_C[i, 1:4] = trueRhat_C[i,1:] - r_C[i, 1:4]/np.linalg.norm(r_C[i, 1:4]) trueR_C[i, 1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i + switchIdx, 1:4])), position_N[i + switchIdx, 1:4]) trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i +switchIdx, 1:4])) ,position_N[i +switchIdx, 1:4])/np.linalg.norm(position_N[i +switchIdx, 1:4]) trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[i,1:4])))/pixelSize[0] trueRhat_C[i,1:] *= focal/trueRhat_C[i,3] trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5 trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5 else: if self.filterUse == "relOD": measCovar[i,1:] = np.full(3*3, np.nan) covar_C[i, 1:] = np.full(3 * 3, np.nan) navCovarLong[switchIdx:,:] = np.copy(navCovar) timeData = position_N[:, 0] * macros.NANO2MIN if self.filterUse == "relOD": BSK_plt.plot_TwoOrbits(navState, measPos) # BSK_plt.AnimatedCircles(sizeOfCam, circleCenters, circleRadii, validCircle) BSK_plt.diff_vectors(trueR_C, r_C, validCircle, "Circ") BSK_plt.plot_cirlces(circleCenters, circleRadii, validCircle, sizeOfCam) BSK_plt.plotStateCovarPlot(stateError, navCovarLong) if self.filterUse == "bias": circleCenters[i,1:] += centerBias[i,1:] circleRadii[i,1:] += radBias[i,1:] BSK_plt.plotPostFitResiduals(navPostFits, pixCovar) BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam)) if self.filterUse == "relOD": BSK_plt.plotPostFitResiduals(navPostFits, measCovar) figureList = {} if showPlots: BSK_plt.show_all_plots() else: fileName = os.path.basename(os.path.splitext(__file__)[0]) figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"] figureList = BSK_plt.save_all_plots(fileName, figureNames) return figureList
def run(showPlots, simTime = None): # Instantiate base simulation TheBSKSim = BSKSim(fswRate=0.5, dynRate=0.5) TheBSKSim.set_DynModel(BSK_OpNavDynamics) TheBSKSim.set_FswModel(BSK_OpNavFsw) TheBSKSim.initInterfaces() # Configure a scenario in the base simulation TheScenario = scenario_OpNav(TheBSKSim) TheScenario.filterUse = "relOD" TheScenario.log_outputs() TheScenario.configure_initial_conditions() TheBSKSim.get_DynModel().cameraMod.saveImages = 0 # opNavMode 1 is used for viewing the spacecraft as it navigates, opNavMode 2 is for headless camera simulation TheBSKSim.get_DynModel().vizInterface.opNavMode = 2 mode = ["None", "-directComm", "-opNavMode"] # The following code spawns the Vizard application from python as a function of the mode selected above, and the platform. if platform != "darwin": child = subprocess.Popen([TheBSKSim.vizPath, "--args", mode[TheBSKSim.get_DynModel().vizInterface.opNavMode], "tcp://localhost:5556"]) else: child = subprocess.Popen(["open", TheBSKSim.vizPath, "--args", mode[TheBSKSim.get_DynModel().vizInterface.opNavMode], "tcp://localhost:5556"]) print("Vizard spawned with PID = " + str(child.pid)) # Configure FSW mode TheScenario.masterSim.modeRequest = 'prepOpNav' # Initialize simulation TheBSKSim.InitializeSimulationAndDiscover() # Configure run time and execute simulation simulationTime = macros.min2nano(10.) TheBSKSim.ConfigureStopTime(simulationTime) print('Starting Execution') t1 = time.time() TheBSKSim.ExecuteSimulation() if TheScenario.filterUse == "relOD": TheScenario.masterSim.modeRequest = 'OpNavOD' else: TheScenario.masterSim.modeRequest = 'OpNavODB' if simTime != None: simulationTime = macros.min2nano(simTime) else: simulationTime = macros.min2nano(600) TheBSKSim.ConfigureStopTime(simulationTime) TheBSKSim.ExecuteSimulation() t2 = time.time() print('Finished Execution in ', t2-t1, ' seconds. Post-processing results') try: os.kill(child.pid + 1, signal.SIGKILL) except: print("IDK how to turn this thing off") # Pull the results of the base simulation running the chosen scenario if showPlots: figureList = TheScenario.pull_outputs(showPlots) return figureList else: return {} if __name__ == "__main__": run(True)