Source code for scenario_LimbAttOD

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This script is called by OpNavScenarios/OpNavMC/MonteCarlo.py in order to make MC data.

"""
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
from Basilisk.utilities import RigidBodyKinematics as rbk


# Get current file path
import sys, os, inspect, time, signal, subprocess
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

from sys import platform

# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/../..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np

# Import plotting file for your scenario
sys.path.append(path + '/../../plotting')
import OpNav_Plotting as BSK_plt

# Create your own scenario child class
[docs]class scenario_OpNav(BSKSim): """Main Simulation Class""" def __init__(self): super(scenario_OpNav, self).__init__(BSKSim) self.fswRate = 0.5 self.dynRate = 0.5 self.set_DynModel(BSK_OpNavDynamics) self.set_FswModel(BSK_OpNavFsw) self.initInterfaces() self.name = 'scenario_opnav' self.configure_initial_conditions() def configure_initial_conditions(self): print('%s: configure_initial_conditions' % self.name) # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 18000 * 1E3 # meters oe.e = 0.6 oe.i = 10 * macros.D2R oe.Omega = 25. * macros.D2R oe.omega = 190. * macros.D2R oe.f = 80. * macros.D2R # 90 good mu = self.get_DynModel().marsGravBody.mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] rError= np.array([10000.,10000., -10000]) vError= np.array([100, -10, 10]) MRP= [0,-0.3,0] self.get_FswModel().relativeODData.stateInit = (rN+rError).tolist() + (vN+vError).tolist() self.get_DynModel().scObject.hub.r_CN_NInit = unitTestSupport.np2EigenVectorXd(rN) # m - r_CN_N self.get_DynModel().scObject.hub.v_CN_NInit = unitTestSupport.np2EigenVectorXd(vN) # m/s - v_CN_N self.get_DynModel().scObject.hub.sigma_BNInit = [[MRP[0]], [MRP[1]], [MRP[2]]] # sigma_BN_B self.get_DynModel().scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # rad/s - omega_BN_B qNoiseIn = np.identity(6) qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3] * 1E-3 * 1E-3 qNoiseIn[3:6, 3:6] = qNoiseIn[3:6, 3:6] * 1E-4 * 1E-4 self.get_FswModel().relativeODData.qNoise = qNoiseIn.reshape(36).tolist() self.get_FswModel().horizonNavData.noiseSF = 20 def log_outputs(self): print('%s: log_outputs' % self.name) # Dynamics process outputs: log messages below if desired. # FSW process outputs samplingTime = self.get_FswModel().processTasksTimeStep # self.TotalSim.logThisMessage(self.get_FswModel().trackingErrorCamData.outputDataName, samplingTime) # self.TotalSim.logThisMessage(self.get_FswModel().trackingErrorData.outputDataName, samplingTime) self.TotalSim.logThisMessage(self.get_FswModel().relativeODData.filtDataOutMsgName, samplingTime) self.TotalSim.logThisMessage(self.get_DynModel().scObject.scStateOutMsgName,samplingTime) self.TotalSim.logThisMessage(self.get_FswModel().horizonNavData.opNavOutMsgName, samplingTime) self.TotalSim.logThisMessage(self.get_FswModel().limbFinding.opnavLimbOutMsgName, samplingTime) return def pull_outputs(self, showPlots): print('%s: pull_outputs' % self.name) # Dynamics process outputs: pull log messages below if any ## Spacecraft true states position_N = self.pullMessageLogData( self.get_DynModel().scObject.scStateOutMsgName + ".r_BN_N", range(3)) velocity_N = self.pullMessageLogData( self.get_DynModel().scObject.scStateOutMsgName + ".v_BN_N", range(3)) ## Attitude sigma_BN = self.pullMessageLogData( self.get_DynModel().scObject.scStateOutMsgName + ".sigma_BN", range(3)) ## Image processing limb = self.pullMessageLogData( self.get_FswModel().limbFinding.opnavLimbOutMsgName + ".limbPoints", range(2*2000)) numLimbPoints = self.pullMessageLogData( self.get_FswModel().limbFinding.opnavLimbOutMsgName + ".numLimbPoints", range(1)) validLimb = self.pullMessageLogData( self.get_FswModel().limbFinding.opnavLimbOutMsgName + ".valid", range(1)) ## OpNav Out measPos = self.pullMessageLogData( self.get_FswModel().horizonNavData.opNavOutMsgName + ".r_BN_N", range(3)) r_C = self.pullMessageLogData( self.get_FswModel().horizonNavData.opNavOutMsgName + ".r_BN_C", range(3)) measCovar = self.pullMessageLogData( self.get_FswModel().horizonNavData.opNavOutMsgName + ".covar_N", range(3 * 3)) covar_C = self.pullMessageLogData( self.get_FswModel().horizonNavData.opNavOutMsgName + ".covar_C", range(3 * 3)) NUM_STATES = 6 ## Navigation results navState = self.pullMessageLogData( self.get_FswModel().relativeODData.filtDataOutMsgName + ".state", range(NUM_STATES)) navCovar = self.pullMessageLogData( self.get_FswModel().relativeODData.filtDataOutMsgName + ".covar", range(NUM_STATES * NUM_STATES)) navPostFits = self.pullMessageLogData( self.get_FswModel().relativeODData.filtDataOutMsgName + ".postFitRes", range(NUM_STATES - 3)) sigma_CB = self.get_DynModel().cameraMRP_CB sizeMM = self.get_DynModel().cameraSize sizeOfCam = self.get_DynModel().cameraRez focal = self.get_DynModel().cameraFocal #in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() stateError = np.zeros([len(position_N[:,0]), NUM_STATES+1]) navCovarLong = np.full([len(position_N[:,0]), 1+NUM_STATES*NUM_STATES], np.nan) navCovarLong[:,0] = np.copy(position_N[:,0]) stateError[:, 0:4] = np.copy(position_N) stateError[:,4:7] = np.copy(velocity_N[:,1:]) measError = np.full([len(measPos[:,0]), 4], np.nan) measError[:,0] = measPos[:,0] measError_C = np.full([len(measPos[:,0]), 5], np.nan) measError_C[:,0] = measPos[:,0] trueRhat_C = np.full([len(numLimbPoints[:,0]), 4], np.nan) trueR_C = np.full([len(numLimbPoints[:,0]), 4], np.nan) trueCircles = np.full([len(numLimbPoints[:,0]), 4], np.nan) trueCircles[:,0] = numLimbPoints[:,0] trueRhat_C[:,0] = numLimbPoints[:,0] trueR_C[:,0] = numLimbPoints[:,0] switchIdx = 0 Rmars = 3396.19*1E3 for j in range(len(stateError[:, 0])): if stateError[j, 0] in navState[:, 0]: stateError[j, 1:4] -= navState[j - switchIdx, 1:4] stateError[j, 4:] -= navState[j - switchIdx, 4:] else: stateError[j, 1:] = np.full(NUM_STATES, np.nan) switchIdx += 1 for i in range(len(numLimbPoints[:,0])): if numLimbPoints[i,1] > 1E-8: measError[i, 1:4] = position_N[i +switchIdx, 1:4] - measPos[i, 1:4] measError_C[i, 4] = np.linalg.norm(position_N[i +switchIdx, 1:4]) - np.linalg.norm(r_C[i, 1:4]) trueR_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i +switchIdx, 1:4])) , position_N[i +switchIdx, 1:4]) trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i +switchIdx, 1:4])) ,position_N[i +switchIdx, 1:4])/np.linalg.norm(position_N[i +switchIdx, 1:4]) trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[i,1:4])))/pixelSize[0] trueRhat_C[i,1:] *= focal/trueRhat_C[i,3] measError_C[i, 1:4] = trueRhat_C[i,1:] - r_C[i, 1:4]/np.linalg.norm(r_C[i, 1:4]) trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5 trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5 else: measCovar[i,1:] = np.full(3*3, np.nan) covar_C[i, 1:] = np.full(3 * 3, np.nan) navCovarLong[switchIdx:,:] = np.copy(navCovar) timeData = position_N[:, 0] * macros.NANO2MIN BSK_plt.plot_TwoOrbits(position_N, measPos) BSK_plt.diff_vectors(trueR_C, r_C, validLimb, "Limb") BSK_plt.plot_limb(limb, numLimbPoints, validLimb, sizeOfCam) # BSK_plt.AnimatedScatter(sizeOfCam, circleCenters, circleRadii, validCircle) BSK_plt.plotStateCovarPlot(stateError, navCovarLong) # BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam)) BSK_plt.plotPostFitResiduals(navPostFits, measCovar) figureList = {} if showPlots: BSK_plt.show_all_plots() else: fileName = os.path.basename(os.path.splitext(__file__)[0]) figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"] figureList = BSK_plt.save_all_plots(fileName, figureNames) return figureList
def run(TheScenario): TheScenario.log_outputs() TheScenario.configure_initial_conditions() TheScenario.get_FswModel().imageProcessing.saveImages = 0 TheScenario.get_DynModel().vizInterface.opNavMode = 1 mode = ["None", "-directComm", "-opNavMode"] # The following code spawns the Vizard application from python as a function of the mode selected above, and the platform. if platform != "darwin": child = subprocess.Popen([TheScenario.vizPath, "--args", mode[TheScenario.get_DynModel().vizInterface.opNavMode], "tcp://localhost:5556"]) else: child = subprocess.Popen( ["open", TheScenario.vizPath, "--args", mode[TheScenario.get_DynModel().vizInterface.opNavMode], "tcp://localhost:5556"]) print("Vizard spawned with PID = " + str(child.pid)) # Configure FSW mode TheScenario.modeRequest = 'prepOpNav' # Initialize simulation TheScenario.InitializeSimulationAndDiscover() # Configure run time and execute simulation simulationTime = macros.min2nano(3.) TheScenario.ConfigureStopTime(simulationTime) TheScenario.ExecuteSimulation() TheScenario.modeRequest = 'OpNavAttODLimb' # TheBSKSim.get_DynModel().SetLocalConfigData(TheBSKSim, 60, True) simulationTime = macros.min2nano(600.) TheScenario.ConfigureStopTime(simulationTime) TheScenario.ExecuteSimulation() TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'de430.bsp') TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'naif0012.tls') TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'de-403-masses.tpc') TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'pck00010.tpc') return if __name__ == "__main__": # Instantiate base simulation # Configure a scenario in the base simulation TheScenario = scenario_OpNav() run(TheScenario)