Source code for scenario_CNNImages

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This script is called by OpNavScenarios/CNN_ImageGen/OpNavMonteCarlo.py in order to generate images.

"""
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
from Basilisk.utilities import RigidBodyKinematics as rbk


# Get current file path
import sys, os, inspect, time, subprocess, signal
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/../..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np
from sys import platform

# Import plotting file for your scenario
sys.path.append(path + '/../../plotting')
import OpNav_Plotting as BSK_plt

# Create your own scenario child class
[docs]class scenario_OpNav(BSKSim): """Main Simulation Class""" def __init__(self): super(scenario_OpNav, self).__init__(BSKSim) self.fswRate = 0.5 self.dynRate = 0.5 self.set_DynModel(BSK_OpNavDynamics) self.set_FswModel(BSK_OpNavFsw) self.initInterfaces() self.name = 'scenario_opnav' self.filterUse = "bias" #"relOD" self.configure_initial_conditions() def configure_initial_conditions(self): print('%s: configure_initial_conditions' % self.name) # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 18000*1E3 # meters oe.e = 0. oe.i = 20 * macros.D2R oe.Omega = 25. * macros.D2R oe.omega = 190. * macros.D2R oe.f = 100. * macros.D2R #90 good mu = self.get_DynModel().marsGravBody.mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] MRP= [0,0,0] if self.filterUse =="relOD": self.get_FswModel().relativeODData.stateInit = rN.tolist() + vN.tolist() if self.filterUse == "bias": self.get_FswModel().pixelLineFilterData.stateInit = rN.tolist() + vN.tolist() + bias # self.get_DynModel().scObject.hub.r_CN_NInit = unitTestSupport.np2EigenVectorXd(rN) # m - r_CN_N # self.get_DynModel().scObject.hub.v_CN_NInit = unitTestSupport.np2EigenVectorXd(vN) # m/s - v_CN_N self.get_DynModel().scObject.hub.sigma_BNInit = [[MRP[0]], [MRP[1]], [MRP[2]]] # sigma_BN_B self.get_DynModel().scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # rad/s - omega_BN_B self.get_DynModel().cameraMod.fieldOfView = np.deg2rad(55) def log_outputs(self): print('%s: log_outputs' % self.name) # Dynamics process outputs: log messages below if desired. # FSW process outputs samplingTime = self.get_FswModel().processTasksTimeStep # self.TotalSim.logThisMessage(self.get_FswModel().trackingErrorCamData.outputDataName, samplingTime) self.TotalSim.logThisMessage(self.get_DynModel().scObject.scStateOutMsgName,samplingTime) self.TotalSim.logThisMessage(self.get_FswModel().imageProcessing.opnavCirclesOutMsgName, samplingTime) return def pull_outputs(self, showPlots): print('%s: pull_outputs' % self.name) # Dynamics process outputs: pull log messages below if any # Lr = self.pullMessageLogData(self.get_FswModel().mrpFeedbackControlData.outputDataName + ".torqueRequestBody", range(3)) ## Spacecraft true states position_N = self.pullMessageLogData( self.get_DynModel().scObject.scStateOutMsgName + ".r_BN_N", range(3)) ## Attitude sigma_BN = self.pullMessageLogData( self.get_DynModel().scObject.scStateOutMsgName + ".sigma_BN", range(3)) ## Image processing validCircle = self.pullMessageLogData( self.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".valid", range(1)) sigma_CB = self.get_DynModel().cameraMRP_CB sizeMM = self.get_DynModel().cameraSize sizeOfCam = self.get_DynModel().cameraRez focal = self.get_DynModel().cameraFocal #in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() trueRhat_C = np.full([len(validCircle[:,0]), 4], np.nan) trueCircles = np.full([len(validCircle[:,0]), 4], np.nan) trueCircles[:,0] = validCircle[:,0] trueRhat_C[:,0] = validCircle[:,0] ModeIdx = 0 Rmars = 3396.19*1E3 for j in range(len(position_N[:, 0])): if position_N[j, 0] in validCircle[:, 0]: ModeIdx = j break for i in range(len(validCircle[:,0])): if validCircle[i,1] > 1E-5: trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[ModeIdx+i , 1:4])) ,position_N[ModeIdx+i, 1:4])/np.linalg.norm(position_N[ModeIdx+i, 1:4]) trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[ModeIdx+i,1:4])))/pixelSize[0] trueRhat_C[i,1:] *= focal/trueRhat_C[i,3] trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5 trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5 return
def run(TheScenario, runLog): TheScenario.log_outputs() TheScenario.configure_initial_conditions() if not os.path.exists(runLog): os.makedirs(runLog) TheScenario.get_DynModel().cameraMod.fieldOfView = np.deg2rad(55) # in degrees TheScenario.get_DynModel().cameraMod.cameraIsOn = 1 TheScenario.get_DynModel().cameraMod.saveImages = 1 TheScenario.get_DynModel().cameraMod.saveDir = runLog.split('/')[-2] +'/' +runLog.split('/')[-1] + '/' TheScenario.get_DynModel().vizInterface.opNavMode = 2 mode = ["None", "-directComm", "-opNavMode"] # The following code spawns the Vizard application from python as a function of the mode selected above, and the platform. if platform != "darwin": child = subprocess.Popen([TheScenario.vizPath, "--args", mode[TheScenario.get_DynModel().vizInterface.opNavMode], "tcp://localhost:5556"]) else: child = subprocess.Popen(["open", TheScenario.vizPath, "--args", mode[TheScenario.get_DynModel().vizInterface.opNavMode], "tcp://localhost:5556"]) print("Vizard spawned with PID = " + str(child.pid)) # Configure FSW mode TheScenario.modeRequest = 'imageGen' # Initialize simulation TheScenario.InitializeSimulationAndDiscover() # Configure run time and execute simulation simulationTime = macros.min2nano(100.) TheScenario.ConfigureStopTime(simulationTime) print('Starting Execution') TheScenario.ExecuteSimulation() TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'de430.bsp') TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'naif0012.tls') TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'de-403-masses.tpc') TheScenario.get_DynModel().SpiceObject.unloadSpiceKernel(TheScenario.get_DynModel().SpiceObject.SPICEDataPath, 'pck00010.tpc') return if __name__ == "__main__": # Instantiate base simulation # Configure a scenario in the base simulation TheScenario = scenario_OpNav() run(TheScenario)