Source code for RigidBodyKinematics

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''


# Import required modules:
import numpy as np
from numpy import linalg as la
import math


M_PI = np.pi
D2R = M_PI / 180.
R2D = 180. / M_PI


[docs]def Picheck(x): """ Picheck(x) Makes sure that the angle x lies within +/- Pi. """ if x > M_PI: return x - 2 * M_PI if x < -M_PI: return x + 2 * M_PI return x
[docs]def C2EP(C): """ C2EP Q = C2EP(C) translates the 3x3 direction cosine matrix C into the corresponding 4x1 euler parameter vector Q, where the first component of Q is the non-dimensional Euler parameter Beta_0 >= 0. Transformation is done using the Stanley method. """ tr = np.trace(C) b2 = np.array([(1 + tr) / 4, (1 + 2 * C[0, 0] - tr) / 4, (1 + 2 * C[1, 1] - tr) / 4, (1 + 2 * C[2, 2] - tr) / 4 ]) case = np.argmax(b2) b = b2 if case == 0: b[0] = np.sqrt(b2[0]) b[1] = (C[1, 2] - C[2, 1]) / 4 / b[0] b[2] = (C[2, 0] - C[0, 2]) / 4 / b[0] b[3] = (C[0, 1] - C[1, 0]) / 4 / b[0] elif case == 1: b[1] = np.sqrt(b2[1]) b[0] = (C[1, 2] - C[2, 1]) / 4 / b[1] if b[0] < 0: b[1] = -b[1] b[0] = -b[0] b[2] = (C[0, 1] + C[1, 0]) / 4 / b[1] b[3] = (C[2, 0] + C[0, 2]) / 4 / b[1] elif case == 2: b[2] = np.sqrt(b2[2]) b[0] = (C[2, 0] - C[0, 2]) / 4 / b[2] if b[0] < 0: b[2] = -b[2] b[0] = -b[0] b[1] = (C[0, 1] + C[1, 0]) / 4 / b[2] b[3] = (C[1, 2] + C[2, 1]) / 4 / b[2] elif case == 3: b[3] = np.sqrt(b2[3]) b[0] = (C[0, 1] - C[1, 0]) / 4 / b[3] if b[0] < 0: b[3] = -b[3] b[0] = -b[0] b[1] = (C[2, 0] + C[0, 2]) / 4 / b[3] b[2] = (C[1, 2] + C[2, 1]) / 4 / b[3] return b
[docs]def C2Euler121(C): """ C2Euler121 Q = C2Euler121(C) translates the 3x3 direction cosine matrix C into the corresponding (1-2-1) euler angle set. """ q0 = math.atan2(C[0, 1], -C[0, 2]) q1 = math.acos(C[0, 0]) q2 = math.atan2(C[1, 0], C[2, 0]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler123(C): """ C2Euler123 Q = C2Euler123(C) translates the 3x3 direction cosine matrix C into the corresponding (1-2-3) euler angle set. """ q0 = np.arctan2(-C[2, 1], C[2, 2]) q1 = np.arcsin(C[2, 0]) q2 = np.arctan2(-C[1, 0], C[0, 0]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler131(C): """ C2Euler131 Q = C2Euler131(C) translates the 3x3 direction cosine matrix C into the corresponding (1-3-1) euler angle set. """ q0 = math.atan2(C[0, 2], C[0, 1]) q1 = math.acos(C[0, 0]) q2 = math.atan2(C[2, 0], -C[1, 0]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler132(C): """ C2Euler132 Q = C2Euler132(C) translates the 3x3 direction cosine matrix C into the corresponding (1-3-2) euler angle set. """ q0 = math.atan2(C[1, 2], C[1, 1]) q1 = math.asin(-C[1, 0]) q2 = math.atan2(C[2, 0], C[0, 0]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler212(C): """ C2Euler212 Q = C2Euler212(C) translates the 3x3 direction cosine matrix C into the corresponding (2-1-2) euler angle set. """ q0 = math.atan2(C[1, 0], C[1, 2]) q1 = math.acos(C[1, 1]) q2 = math.atan2(C[0, 1], -C[2, 1]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler213(C): """ C2Euler213 Q = C2Euler213(C) translates the 3x3 direction cosine matrix C into the corresponding (2-1-3) euler angle set. """ q0 = math.atan2(C[2, 0], C[2, 2]) q1 = math.asin(-C[2, 1]) q2 = math.atan2(C[0, 1], C[1, 1]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler231(C): """ C2Euler231 Q = C2Euler231(C) translates the 3x3 direction cosine matrix C into the corresponding (2-3-1) euler angle set. """ q0 = math.atan2(-C[0, 2], C[0, 0]) q1 = math.asin(C[0, 1]) q2 = math.atan2(-C[2, 1], C[1, 1]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler232(C): """ C2Euler232 Q = C2Euler232(C) translates the 3x3 direction cosine matrix C into the corresponding (2-3-2) euler angle set. """ q0 = math.atan2(C[1, 2], -C[1, 0]) q1 = math.acos(C[1, 1]) q2 = math.atan2(C[2, 1], C[0, 1]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler312(C): """ C2Euler312 Q = C2Euler312(C) translates the 3x3 direction cosine matrix C into the corresponding (3-1-2) euler angle set. """ q0 = math.atan2(-C[1, 0], C[1, 1]) q1 = math.asin(C[1, 2]) q2 = math.atan2(-C[0, 2], C[2, 2]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler313(C): """ C2Euler313 Q = C2Euler313(C) translates the 3x3 direction cosine matrix C into the corresponding (3-1-3) euler angle set. """ q0 = math.atan2(C[2, 0], -C[2, 1]) q1 = math.acos(C[2, 2]) q2 = math.atan2(C[0, 2], C[1, 2]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler321(C): """ C2Euler321 Q = C2Euler321(C) translates the 3x3 direction cosine matrix C into the corresponding (3-2-1) euler angle set. """ q0 = math.atan2(C[0, 1], C[0, 0]) q1 = math.asin(-C[0, 2]) q2 = math.atan2(C[1, 2], C[2, 2]) q = np.array([q0, q1, q2]) return q
[docs]def C2Euler323(C): """ C2Euler323 Q = C2Euler323(C) translates the 3x3 direction cosine matrix C into the corresponding (3-2-3) euler angle set. """ q0 = math.atan2(C[2, 1], C[2, 0]) q1 = math.acos(C[2, 2]) q2 = math.atan2(C[1, 2], -C[0, 2]) q = np.array([q0, q1, q2]) return q
[docs]def C2Gibbs(C): """ C2Gibbs Q = C2Gibbs(C) translates the 3x3 direction cosine matrix C into the corresponding 3x1 gibbs vector Q. """ b = C2EP(C) q0 = b[1] / b[0] q1 = b[2] / b[0] q2 = b[3] / b[0] q = np.array([q0, q1, q2]) return q
[docs]def C2MRP(C): """ C2MRP Q = C2MRP(C) translates the 3x3 direction cosine matrix C into the corresponding 3x1 MRP vector Q where the MRP vector is chosen such that |Q| <= 1. """ b = C2EP(C) q = np.array([ b[1] / (1 + b[0]), b[2] / (1 + b[0]), b[3] / (1 + b[0]) ]) return q
[docs]def C2PRV(C): """ C2PRV Q = C2PRV(C) translates the 3x3 direction cosine matrix C into the corresponding 3x1 principal rotation vector Q, where the first component of Q is the principal rotation angle phi (0<= phi <= Pi) """ cp = (np.trace(C) - 1) / 2 p = np.arccos(cp) sp = p / 2. / np.sin(p) q = np.array([ (C[1, 2] - C[2, 1]) * sp, (C[2, 0] - C[0, 2]) * sp, (C[0, 1] - C[1, 0]) * sp ]) return q
[docs]def addEP(b1, b2): """ addEP(B1,B2) Q = addEP(B1,B2) provides the euler parameter vector which corresponds to performing to successive rotations B1 and B2. """ q0 = b2[0] * b1[0] - b2[1] * b1[1] - b2[2] * b1[2] - b2[3] * b1[3] q1 = b2[1] * b1[0] + b2[0] * b1[1] + b2[3] * b1[2] - b2[2] * b1[3] q2 = b2[2] * b1[0] - b2[3] * b1[1] + b2[0] * b1[2] + b2[1] * b1[3] q3 = b2[3] * b1[0] + b2[2] * b1[1] - b2[1] * b1[2] + b2[0] * b1[3] q = np.array([q0, q1, q2, q3]) return q
[docs]def addEuler121(e1, e2): """ addEuler121(E1,E2) Q = addEuler121(E1,E2) computes the overall (1-2-1) euler angle vector corresponding to two successive (1-2-1) rotations E1 and E2. """ cp1 = math.cos(e1[1]) cp2 = math.cos(e2[1]) sp1 = math.sin(e1[1]) sp2 = math.sin(e2[1]) dum = e1[2] + e2[0] q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum)) cp3 = math.cos(q1) q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1)) q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2)) q = np.array([q0, q1, q2]) return q
[docs]def addEuler123(e1, e2): """ addEuler123(E1,E2) Q = addEuler123(E1,E2) computes the overall (1-2-3) euler angle vector corresponding to two successive (1-2-3) rotations E1 and E2. """ C1 = euler1232C(e1) C2 = euler1232C(e2) C = np.dot(C2, C1) return C2Euler123(C)
[docs]def addEuler131(e1, e2): """ addEuler131(E1,E2) Q = addEuler131(E1,E2) computes the overall (1-3-1) euler angle vector corresponding to two successive (1-3-1) rotations E1 and E2. """ cp1 = math.cos(e1[1]) cp2 = math.cos(e2[1]) sp1 = math.sin(e1[1]) sp2 = math.sin(e2[1]) dum = e1[2] + e2[0] q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum)) cp3 = math.cos(q1) q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1)) q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2)) q = np.array([q0, q1, q2]) return q
[docs]def addEuler132(e1, e2): """ addEuler132(E1,E2) Q = addEuler132(E1,E2) computes the overall (1-3-2) euler angle vector corresponding to two successive (1-3-2) rotations E1 and E2. """ C1 = euler1322C(e1) C2 = euler1322C(e2) C = np.dot(C2, C1) return C2Euler132(C)
[docs]def addEuler212(e1, e2): """ addEuler212(E1,E2) Q = addEuler212(E1,E2) computes the overall (2-1-2) euler angle vector corresponding to two successive (2-1-2) rotations E1 and E2. """ cp1 = math.cos(e1[1]) cp2 = math.cos(e2[1]) sp1 = math.sin(e1[1]) sp2 = math.sin(e2[1]) dum = e1[2] + e2[0] q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum)) cp3 = math.cos(q1) q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1)) q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2)) q = np.array([q0, q1, q2]) return q
[docs]def addEuler213(e1, e2): """ addEuler213(E1,E2) Q = addEuler213(E1,E2) computes the overall (2-1-3) euler angle vector corresponding to two successive (2-1-3) rotations E1 and E2. """ C1 = euler2132C(e1) C2 = euler2132C(e2) C = np.dot(C2, C1) return C2Euler213(C)
[docs]def addEuler231(e1, e2): """ addEuler231(E1,E2) Q = addEuler231(E1,E2) computes the overall (2-3-1) euler angle vector corresponding to two successive (2-3-1) rotations E1 and E2. """ C1 = euler2312C(e1) C2 = euler2312C(e2) C = np.dot(C2, C1) return C2Euler231(C)
[docs]def addEuler232(e1, e2): """ addEuler232(E1,E2) Q = addEuler232(E1,E2) computes the overall (2-3-2) euler angle vector corresponding to two successive (2-3-2) rotations E1 and E2. """ cp1 = math.cos(e1[1]) cp2 = math.cos(e2[1]) sp1 = math.sin(e1[1]) sp2 = math.sin(e2[1]) dum = e1[2] + e2[0] q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum)) cp3 = math.cos(q1) q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1)) q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2)) q = np.array([q0, q1, q2]) return q
[docs]def addEuler312(e1, e2): """ addEuler312(E1,E2) Q = addEuler312(E1,E2) computes the overall (3-1-2) euler angle vector corresponding to two successive (3-1-2) rotations E1 and E2. """ C1 = euler3122C(e1) C2 = euler3122C(e2) C = np.dot(C2, C1) return C2Euler312(C)
[docs]def addEuler313(e1, e2): """ addEuler313(E1,E2) Q = addEuler313(E1,E2) computes the overall (3-1-3) euler angle vector corresponding to two successive (3-1-3) rotations E1 and E2. """ cp1 = math.cos(e1[1]) cp2 = math.cos(e2[1]) sp1 = math.sin(e1[1]) sp2 = math.sin(e2[1]) dum = e1[2] + e2[0] q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum)) cp3 = math.cos(q1) q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1)) q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2)) q = np.array([q0, q1, q2]) return q
[docs]def addEuler321(e1, e2): """ addEuler321(E1,E2) Q = addEuler321(E1,E2) computes the overall (3-2-1) euler angle vector corresponding to two successive (3-2-1) rotations E1 and E2. """ C1 = euler3212C(e1) C2 = euler3212C(e2) C = np.dot(C2, C1) return C2Euler321(C)
[docs]def addEuler323(e1, e2): """ addEuler323(E1,E2) Q = addEuler323(E1,E2) computes the overall (3-2-3) euler angle vector corresponding to two successive (3-2-3) rotations E1 and E2. """ cp1 = math.cos(e1[1]) cp2 = math.cos(e2[1]) sp1 = math.sin(e1[1]) sp2 = math.sin(e2[1]) dum = e1[2] + e2[0] q1 = math.acos(cp1 * cp2 - sp1 * sp2 * math.cos(dum)) cp3 = math.cos(q1) q0 = Picheck(e1[0] + math.atan2(sp1 * sp2 * math.sin(dum), cp2 - cp3 * cp1)) q2 = Picheck(e2[2] + math.atan2(sp1 * sp2 * math.sin(dum), cp1 - cp3 * cp2)) q = np.array([q0, q1, q2]) return q
[docs]def addGibbs(q1, q2): """ addGibbs(Q1,Q2) Q = addGibbs(Q1,Q2) provides the gibbs vector which corresponds to performing to successive rotations Q1 and Q2. """ result = (q1 + q2 + np.cross(q1, q2)) / (1 - np.dot(q1, q2)) return result
[docs]def addMRP(q1, q2): """ addMRP(Q1,Q2) Q = addMRP(Q1,Q2) provides the MRP vector which corresponds to performing to successive rotations Q1 and Q2. """ den = 1 + np.dot(q1, q1) * np.dot(q2, q2) - 2 * np.dot(q1, q2) if np.abs(den) < 1e-5: q2 = -q2/np.dot(q2,q2) den = 1 + np.dot(q1, q1) * np.dot(q2, q2) - 2 * np.dot(q1, q2) num = (1 - np.dot(q1, q1)) * q2 + (1 - np.dot(q2, q2)) * q1 + 2 * np.cross(q1, q2) q = num / den if np.dot(q,q) > 1: q = - q/np.dot(q,q) return q
[docs]def PRV2elem(r): """ PRV2elem(R) Q = PRV2elem(R) translates a prinicpal rotation vector R into the corresponding principal rotation element set Q. """ q0 = np.linalg.norm(r) if q0 < 1e-12: return np.zeros(4) q1 = r[0] / q0 q2 = r[1] / q0 q3 = r[2] / q0 q = np.array([q0, q1, q2, q3]) return q
[docs]def addPRV(qq1, qq2): """ addPRV(Q1,Q2) Q = addPRV(Q1,Q2) provides the principal rotation vector which corresponds to performing to successive prinicipal rotations Q1 and Q2. """ q1 = PRV2elem(qq1) q2 = PRV2elem(qq2) cp1 = math.cos(q1[0] / 2.) cp2 = math.cos(q2[0] / 2.) sp1 = math.sin(q1[0] / 2.) sp2 = math.sin(q2[0] / 2.) e1 = q1[1:4] e2 = q2[1:4] p = 2. * math.acos(cp1 * cp2 - sp1 * sp2 * np.dot(e1, e2)) sp = math.sin(p / 2.) e = (cp1 * sp2 * e2 + cp2 * sp1 * e1 + sp1 * sp2 * np.cross(e1, e2)) q = (p / sp) * e return q
[docs]def BinvEP(q): """ BinvEP(Q) B = BinvEP(Q) returns the 3x4 matrix which relates the derivative of euler parameter vector Q to the body angular velocity vector w. w = 2 [B(Q)]^(-1) dQ/dt """ B = np.zeros([3, 4]) B[0, 0] = -q[1] B[0, 1] = q[0] B[0, 2] = q[3] B[0, 3] = -q[2] B[1] = -q[2] B[1, 1] = -q[3] B[1, 2] = q[0] B[1, 3] = q[1] B[2] = -q[3] B[2, 1] = q[2] B[2, 2] = -q[1] B[2, 3] = q[0] return B
[docs]def BinvEuler121(q): """ BinvEuler121(Q) B = BinvEuler121(Q) returns the 3x3 matrix which relates the derivative of the (1-2-1) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c2 B[0, 1] = 0 B[0, 2] = 1 B[1, 0] = s2 * s3 B[1, 1] = c3 B[1, 2] = 0 B[2, 0] = s2 * c3 B[2, 1] = -s3 B[2, 2] = 0 return B
[docs]def BinvEuler123(q): """ BinvEuler123(Q) B = BinvEuler123(Q) returns the 3x3 matrix which relates the derivative of the (1-2-3) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c2 * c3 B[0, 1] = s3 B[0, 2] = 0 B[1, 0] = -c2 * s3 B[1, 1] = c3 B[1, 2] = 0 B[2, 0] = s2 B[2, 1] = 0 B[2, 2] = 1 return B
[docs]def BinvEuler131(q): """ BinvEuler131(Q) B = BinvEuler131(Q) returns the 3x3 matrix which relates the derivative of the (1-3-1) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c2 B[0, 1] = 0 B[0, 2] = 1 B[1, 0] = -s2 * c3 B[1, 1] = s3 B[1, 2] = 0 B[2, 0] = s2 * s3 B[2, 1] = c3 B[2, 2] = 0 return B
[docs]def BinvEuler132(q): """ BinvEuler132(Q) B = BinvEuler132(Q) returns the 3x3 matrix which relates the derivative of the (1-3-2) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c2 * c3 B[0, 1] = -s3 B[0, 2] = 0 B[1, 0] = -s2 B[1, 1] = 0 B[1, 2] = 1 B[2, 0] = c2 * s3 B[2, 1] = c3 B[2, 2] = 0 return B
[docs]def BinvEuler212(q): """ BinvEuler212(Q) B = BinvEuler212(Q) returns the 3x3 matrix which relates the derivative of the (2-1-2) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s2 * s3 B[0, 1] = c3 B[0, 2] = 0 B[1, 0] = c2 B[1, 1] = 0 B[1, 2] = 1 B[2, 0] = -s2 * c3 B[2, 1] = s3 B[2, 2] = 0 return B
[docs]def BinvEuler213(q): """ BinvEuler213(Q) B = BinvEuler213(Q) returns the 3x3 matrix which relates the derivative of the (2-1-3) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c2 * s3 B[0, 1] = c3 B[0, 2] = 0 B[1, 0] = c2 * c3 B[1, 1] = -s3 B[1, 2] = 0 B[2, 0] = -s2 B[2, 1] = 0 B[2, 2] = 1 return B
[docs]def BinvEuler231(q): """ BinvEuler231(Q) B = BinvEuler231(Q) returns the 3x3 matrix which relates the derivative of the (2-3-1) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s2 B[0, 1] = 0 B[0, 2] = 1 B[1, 0] = c2 * c3 B[1, 1] = s3 B[1, 2] = 0 B[2, 0] = -c2 * s3 B[2, 1] = c3 B[2, 2] = 0 return B
[docs]def BinvEuler232(q): """ BinvEuler232(Q) B = BinvEuler232(Q) returns the 3x3 matrix which relates the derivative of the (2-3-2) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s2 * c3 B[0, 1] = -s3 B[0, 2] = 0 B[1, 0] = c2 B[1, 1] = 0 B[1, 2] = 1 B[2, 0] = s2 * s3 B[2, 1] = c3 B[2, 2] = 0 return B
[docs]def BinvEuler312(q): """ BinvEuler312(Q) B = BinvEuler312(Q) returns the 3x3 matrix which relates the derivative of the (3-1-2) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = -c2 * s3 B[0, 1] = c3 B[0, 2] = 0 B[1, 0] = s2 B[1, 1] = 0 B[1, 2] = 1 B[2, 0] = c2 * c3 B[2, 1] = s3 B[2, 2] = 0 return B
[docs]def BinvEuler313(q): """ BinvEuler313(Q) B = BinvEuler313(Q) returns the 3x3 matrix which relates the derivative of the (3-1-3) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s2 * s3 B[0, 1] = c3 B[0, 2] = 0 B[1, 0] = s2 * c3 B[1, 1] = -s3 B[1, 2] = 0 B[2, 0] = c2 B[2, 1] = 0 B[2, 2] = 1 return B
[docs]def BinvEuler321(q): """ BinvEuler321(Q) B = BinvEuler321(Q) returns the 3x3 matrix which relates the derivative of the (3-2-1) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = -s2 B[0, 1] = 0 B[0, 2] = 1 B[1, 0] = c2 * s3 B[1, 1] = c3 B[1, 2] = 0 B[2, 0] = c2 * c3 B[2, 1] = -s3 B[2, 2] = 0 return B
[docs]def BinvEuler323(q): """ BinvEuler323(Q) B = BinvEuler323(Q) returns the 3x3 matrix which relates the derivative of the (3-2-3) euler angle vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = -s2 * c3 B[0, 1] = s3 B[0, 2] = 0 B[1, 0] = s2 * s3 B[1, 1] = c3 B[1, 2] = 0 B[2, 0] = c2 B[2, 1] = 0 B[2, 2] = 1 return B
[docs]def BinvGibbs(q): """ BinvGibbs(Q) B = BinvGibbs(Q) returns the 3x3 matrix which relates the derivative of gibbs vector Q to the body angular velocity vector w. w = 2 [B(Q)]^(-1) dQ/dt """ B = np.zeros([3, 3]) B[0, 0] = 1 B[0, 1] = q[2] B[0, 2] = -q[1] B[1, 0] = -q[2] B[1, 1] = 1 B[1, 2] = q[0] B[2, 0] = q[1] B[2, 1] = -q[0] B[2, 2] = 1 B = B / (1 + np.dot(q, q)) return B
[docs]def BinvMRP(q): """ BinvMRP(Q) B = BinvMRP(Q) returns the 3x3 matrix which relates the derivative of MRP vector Q to the body angular velocity vector w. w = 4 [B(Q)]^(-1) dQ/dt """ s2 = np.dot(q, q) B = np.zeros([3, 3]) B[0, 0] = 1 - s2 + 2 * q[0] * q[0] B[0, 1] = 2 * (q[0] * q[1] + q[2]) B[0, 2] = 2 * (q[0] * q[2] - q[1]) B[1, 0] = 2 * (q[1] * q[0] - q[2]) B[1, 1] = 1 - s2 + 2 * q[1] * q[1] B[1, 2] = 2 * (q[1] * q[2] + q[0]) B[2, 0] = 2 * (q[2] * q[0] + q[1]) B[2, 1] = 2 * (q[2] * q[1] - q[0]) B[2, 2] = 1 - s2 + 2 * q[2] * q[2] B = B / (1 + s2) / (1 + s2) return B
[docs]def BinvPRV(q): """ BinvPRV(Q) B = BinvPRV(Q) returns the 3x3 matrix which relates the derivative of principal rotation vector Q to the body angular velocity vector w. w = [B(Q)]^(-1) dQ/dt """ p = la.norm(q) c1 = (1 - math.cos(p)) / p / p c2 = (p - math.sin(p)) / p / p / p B = np.zeros([3, 3]) B[0, 0] = 1 - c2 * (q[1] * q[1] + q[2] * q[2]) B[0, 1] = c1 * q[2] + c2 * q[0] * q[1] B[0, 2] = -c1 * q[1] + c2 * q[0] * q[2] B[1, 0] = -c1 * q[2] + c2 * q[0] * q[1] B[1, 1] = 1 - c2 * (q[0] * q[0] + q[2] * q[2]) B[1, 2] = c1 * q[0] + c2 * q[1] * q[2] B[2, 0] = c1 * q[1] + c2 * q[2] * q[0] B[2, 1] = -c1 * q[0] + c2 * q[2] * q[1] B[2, 2] = 1 - c2 * (q[0] * q[0] + q[1] * q[1]) return B
[docs]def BmatEP(q): """ BmatEP(Q) B = BmatEP(Q) returns the 4x3 matrix which relates the body angular velocity vector w to the derivative of Euler parameter vector Q. dQ/dt = 1/2 [B(Q)] w """ B = np.zeros([4, 3]) B[0, 0] = -q[1] B[0, 1] = -q[2] B[0, 2] = -q[3] B[1, 0] = q[0] B[1, 1] = -q[3] B[1, 2] = q[2] B[2, 0] = q[3] B[2, 1] = q[0] B[2, 2] = -q[1] B[3, 0] = -q[2] B[3, 1] = q[1] B[3, 2] = q[0] return B
[docs]def BmatEuler121(q): """ BmatEuler121(Q) B = BmatEuler121(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (1-2-1) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = 0 B[0, 1] = s3 B[0, 2] = c3 B[1, 0] = 0 B[1, 1] = s2 * c3 B[1, 2] = -s2 * s3 B[2, 0] = s2 B[2, 1] = -c2 * s3 B[2, 2] = -c2 * c3 B = B / s2 return B
[docs]def BmatEuler123(q): """ BmatEuler123(Q) B = BmatEuler123(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (1-2-3) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c3 B[0, 1] = -s3 B[0, 2] = 0 B[1, 0] = c2 * s3 B[1, 1] = c2 * c3 B[1, 2] = 0 B[2, 0] = -s2 * c3 B[2, 1] = s2 * s3 B[2, 2] = c2 B = B / c2 return B
[docs]def BmatEuler131(q): """ BmatEuler131(Q) B = BmatEuler131(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (1-3-1) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = 0 B[0, 1] = -c3 B[0, 2] = s3 B[1, 0] = 0 B[1, 1] = s2 * s3 B[1, 2] = s2 * c3 B[2, 0] = s2 B[2, 1] = c2 * c3 B[2, 2] = -c2 * s3 B = B / s2 return B
[docs]def BmatEuler132(q): """ BmatEuler132(Q) B = BmatEuler132(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (1-3-2) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c3 B[0, 1] = 0 B[0, 2] = s3 B[1, 0] = -c2 * s3 B[1, 1] = 0 B[1, 2] = c2 * c3 B[2, 0] = s2 * c3 B[2, 1] = c2 B[2, 2] = s2 * s3 B = B / c2 return B
[docs]def BmatEuler212(q): """ BmatEuler212(Q) B = BmatEuler212(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (2-1-2) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s3 B[0, 1] = 0 B[0, 2] = -c3 B[1, 0] = s2 * c3 B[1, 1] = 0 B[1, 2] = s2 * s3 B[2, 0] = -c2 * s3 B[2, 1] = s2 B[2, 2] = c2 * c3 B = B / s2 return B
[docs]def BmatEuler213(q): """ BmatEuler213(Q) B = BmatEuler213(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (2-1-3) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s3 B[0, 1] = c3 B[0, 2] = 0 B[1, 0] = c2 * c3 B[1, 1] = -c2 * s3 B[1, 2] = 0 B[2, 0] = s2 * s3 B[2, 1] = s2 * c3 B[2, 2] = c2 B = B / c2 return B
[docs]def BmatEuler231(q): """ BmatEuler231(Q) B = BmatEuler231(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (2-3-1) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = 0 B[0, 1] = c3 B[0, 2] = -s3 B[1, 0] = 0 B[1, 1] = c2 * s3 B[1, 2] = c2 * c3 B[2, 0] = c2 B[2, 1] = -s2 * c3 B[2, 2] = s2 * s3 B = B / c2 return B
[docs]def BmatEuler232(q): """ BmatEuler232(Q) B = BmatEuler232(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (2-3-2) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = c3 B[0, 1] = 0 B[0, 2] = s3 B[1, 0] = -s2 * s3 B[1, 1] = 0 B[1, 2] = s2 * c3 B[2, 0] = -c2 * c3 B[2, 1] = s2 B[2, 2] = -c2 * s3 B = B / s2 return B
[docs]def BmatEuler312(q): """ BmatEuler312(Q) B = BmatEuler312(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (3-1-2) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = -s3 B[0, 1] = 0 B[0, 2] = c3 B[1, 0] = c2 * c3 B[1, 1] = 0 B[1, 2] = c2 * s3 B[2, 0] = s2 * s3 B[2, 1] = c2 B[2, 2] = -s2 * c3 B = B / c2 return B
[docs]def BmatEuler313(q): """ BmatEuler313(Q) B = BmatEuler313(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (3-1-3) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = s3 B[0, 1] = c3 B[0, 2] = 0 B[1, 0] = c3 * s2 B[1, 1] = -s3 * s2 B[1, 2] = 0 B[2, 0] = -s3 * c2 B[2, 1] = -c3 * c2 B[2, 2] = s2 B = B / s2 return B
[docs]def BmatEuler321(q): """ BmatEuler321(Q) B = BmatEuler321(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (3-2-1) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = 0 B[0, 1] = s3 B[0, 2] = c3 B[1, 0] = 0 B[1, 1] = c2 * c3 B[1, 2] = -c2 * s3 B[2, 0] = c2 B[2, 1] = s2 * s3 B[2, 2] = s2 * c3 B = B / c2 return B
[docs]def BmatEuler323(q): """ BmatEuler323(Q) B = BmatEuler323(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of (3-2-3) euler angle vector Q. dQ/dt = [B(Q)] w """ s2 = math.sin(q[1]) c2 = math.cos(q[1]) s3 = math.sin(q[2]) c3 = math.cos(q[2]) B = np.zeros([3, 3]) B[0, 0] = -c3 B[0, 1] = s3 B[0, 2] = 0 B[1, 0] = s2 * s3 B[1, 1] = s2 * c3 B[1, 2] = 0 B[2, 0] = c2 * c3 B[2, 1] = -c2 * s3 B[2, 2] = s2 B = B / s2 return B
[docs]def BmatGibbs(q): """ BmatGibbs(Q) B = BmatGibbs(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of Gibbs vector Q. dQ/dt = 1/2 [B(Q)] w """ B = np.zeros([3, 3]) B[0, 0] = 1 + q[0] * q[0] B[0, 1] = q[0] * q[1] - q[2] B[0, 2] = q[0] * q[2] + q[1] B[1, 0] = q[1] * q[0] + q[2] B[1, 1] = 1 + q[1] * q[1] B[1, 2] = q[1] * q[2] - q[0] B[2, 0] = q[2] * q[0] - q[1] B[2, 1] = q[2] * q[1] + q[0] B[2, 2] = 1 + q[2] * q[2] return B
[docs]def BmatMRP(q): """ BmatMRP(Q) B = BmatMRP(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of MRP vector Q. dQ/dt = 1/4 [B(Q)] w """ B = np.zeros([3, 3]) s2 = np.dot(q, q) B[0, 0] = 1 - s2 + 2 * q[0] * q[0] B[0, 1] = 2 * (q[0] * q[1] - q[2]) B[0, 2] = 2 * (q[0] * q[2] + q[1]) B[1, 0] = 2 * (q[1] * q[0] + q[2]) B[1, 1] = 1 - s2 + 2 * q[1] * q[1] B[1, 2] = 2 * (q[1] * q[2] - q[0]) B[2, 0] = 2 * (q[2] * q[0] - q[1]) B[2, 1] = 2 * (q[2] * q[1] + q[0]) B[2, 2] = 1 - s2 + 2 * q[2] * q[2] return B
[docs]def BmatPRV(q): """ BmatPRV(Q) B = BmatPRV(Q) returns the 3x3 matrix which relates the body angular velocity vector w to the derivative of principal rotation vector Q. dQ/dt = [B(Q)] w """ p = np.linalg.norm(q) c = 1 / p / p * (1 - p / 2 / math.tan(p / 2)) B = np.zeros([3, 3]) B[0, 0] = 1 - c * (q[1] * q[1] + q[2] * q[2]) B[0, 1] = -q[2] / 2 + c * (q[0] * q[1]) B[0, 2] = q[1] / 2 + c * (q[0] * q[2]) B[1, 0] = q[2] / 2 + c * (q[0] * q[1]) B[1, 1] = 1 - c * (q[0] * q[0] + q[2] * q[2]) B[1, 2] = -q[0] / 2 + c * (q[1] * q[2]) B[2, 0] = -q[1] / 2 + c * (q[0] * q[2]) B[2, 1] = q[0] / 2 + c * (q[1] * q[2]) B[2, 2] = 1 - c * (q[0] * q[0] + q[1] * q[1]) return B
[docs]def dEP(q, w): """ dEP(Q,W) dq = dEP(Q,W) returns the euler parameter derivative for a given euler parameter vector Q and body angular velocity vector w. dQ/dt = 1/2 [B(Q)] w """ return .5 * np.dot(BmatEP(q), w)
[docs]def dEuler121(q, w): """ dEuler121(Q,W) dq = dEuler121(Q,W) returns the (1-2-1) euler angle derivative vector for a given (1-2-1) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler121(q), w)
[docs]def dEuler123(q, w): """ dEuler123(Q,W) dq = dEuler123(Q,W) returns the (1-2-3) euler angle derivative vector for a given (1-2-3) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler123(q), w)
[docs]def dEuler131(q, w): """ dEuler131(Q,W) dq = dEuler131(Q,W) returns the (1-3-1) euler angle derivative vector for a given (1-3-1) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler131(q), w)
[docs]def dEuler132(q, w): """ dEuler132(Q,W) dq = dEuler132(Q,W) returns the (1-3-2) euler angle derivative vector for a given (1-3-2) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler132(q), w)
[docs]def dEuler212(q, w): """ dEuler212(Q,W) dq = dEuler212(Q,W) returns the (2-1-2) euler angle derivative vector for a given (2-1-2) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler212(q), w)
[docs]def dEuler213(q, w): """ dEuler213(Q,W) dq = dEuler213(Q,W) returns the (2-1-3) euler angle derivative vector for a given (2-1-3) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler213(q), w)
[docs]def dEuler231(q, w): """ dEuler231(Q,W) dq = dEuler231(Q,W) returns the (2-3-1) euler angle derivative vector for a given (2-3-1) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler231(q), w)
[docs]def dEuler232(q, w): """ dEuler232(Q,W) dq = dEuler232(Q,W) returns the (2-3-2) euler angle derivative vector for a given (2-3-2) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler232(q), w)
[docs]def dEuler312(q, w): """ dEuler312(Q,W) dq = dEuler312(Q,W) returns the (3-1-2) euler angle derivative vector for a given (3-1-2) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler312(q), w)
[docs]def dEuler313(q, w): """ dEuler313(Q,W) dq = dEuler313(Q,W) returns the (3-1-3) euler angle derivative vector for a given (3-1-3) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler313(q), w)
[docs]def dEuler321(q, w): """ dEuler321(Q,W) dq = dEuler321(Q,W) returns the (3-2-1) euler angle derivative vector for a given (3-2-1) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler321(q), w)
[docs]def dEuler323(q, w): """ dEuler323(Q,W) dq = dEuler323(Q,W) returns the (3-2-3) euler angle derivative vector for a given (3-2-3) euler angle vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatEuler323(q), w)
[docs]def dGibbs(q, w): """ dGibbs(Q,W) dq = dGibbs(Q,W) returns the gibbs derivative for a given gibbs vector Q and body angular velocity vector w. dQ/dt = 1/2 [B(Q)] w """ return .5 * np.dot(BmatGibbs(q), w)
[docs]def dMRP(q, w): """ dMRP(Q,W) dq = dMRP(Q,W) returns the MRP derivative for a given MRP vector Q and body angular velocity vector w. dQ/dt = 1/4 [B(Q)] w """ return .25 * np.dot(BmatMRP(q), w)
[docs]def dPRV(q, w): """ dPRV(Q,W) dq = dPRV(Q,W) returns the PRV derivative for a given PRV vector Q and body angular velocity vector w. dQ/dt = [B(Q)] w """ return np.dot(BmatPRV(q), w)
[docs]def elem2PRV(r): """ elem2PRV(R) Q = elem2PRV(R) translates a prinicpal rotation element set R into the corresponding principal rotation vector Q. """ q0 = r[1] * r[0] q1 = r[2] * r[0] q2 = r[3] * r[0] q = np.array([q0, q1, q2]) return q
[docs]def gibbs2C(q): """ gibbs2C C = gibbs2C(Q) returns the direction cosine matrix in terms of the 3x1 gibbs vector Q. """ q1 = q[0] q2 = q[1] q3 = q[2] qm = np.linalg.norm(q) d1 = qm * qm C = np.zeros([3, 3]) C[0, 0] = 1 + 2 * q1 * q1 - d1 C[0, 1] = 2 * (q1 * q2 + q3) C[0, 2] = 2 * (q1 * q3 - q2) C[1, 0] = 2 * (q2 * q1 - q3) C[1, 1] = 1 + 2 * q2 * q2 - d1 C[1, 2] = 2 * (q2 * q3 + q1) C[2, 0] = 2 * (q3 * q1 + q2) C[2, 1] = 2 * (q3 * q2 - q1) C[2, 2] = 1 + 2 * q3 * q3 - d1 C = C / (1 + d1) return C
[docs]def gibbs2EP(q1): """ gibbs2EP(Q1) Q = gibbs2EP(Q1) translates the gibbs vector Q1 into the euler parameter vector Q. """ qm = np.linalg.norm(q1) ps = np.sqrt(1 + qm * qm) q = np.array([ 1 / ps, q1[0] / ps, q1[1] / ps, q1[2] / ps ]) return q
[docs]def gibbs2Euler121(q): """ gibbs2Euler121(Q) E = gibbs2Euler121(Q) translates the gibbs vector Q into the (1-2-1) euler angle vector E. """ return EP2Euler121(gibbs2EP(q))
[docs]def gibbs2Euler123(q): """ gibbs2Euler123(Q) E = gibbs2Euler123(Q) translates the gibbs vector Q into the (1-2-3) euler angle vector E. """ return EP2Euler123(gibbs2EP(q))
[docs]def gibbs2Euler131(q): """ gibbs2Euler131(Q) E = gibbs2Euler131(Q) translates the gibbs vector Q into the (1-3-1) euler angle vector E. """ return EP2Euler131(gibbs2EP(q))
[docs]def gibbs2Euler132(q): """ gibbs2Euler132(Q) E = gibbs2Euler132(Q) translates the gibbs vector Q into the (1-3-2) euler angle vector E. """ return EP2Euler132(gibbs2EP(q))
[docs]def gibbs2Euler212(q): """ gibbs2Euler212(Q) E = gibbs2Euler212(Q) translates the gibbs vector Q into the (2-1-2) euler angle vector E. """ return EP2Euler212(gibbs2EP(q))
[docs]def gibbs2Euler213(q): """ gibbs2Euler213(Q) E = gibbs2Euler213(Q) translates the gibbs vector Q into the (2-1-3) euler angle vector E. """ return EP2Euler213(gibbs2EP(q))
[docs]def gibbs2Euler231(q): """ gibbs2Euler231(Q) E = gibbs2Euler231(Q) translates the gibbs vector Q into the (2-3-1) euler angle vector E. """ return EP2Euler231(gibbs2EP(q))
[docs]def gibbs2Euler232(q): """ gibbs2Euler232(Q) E = gibbs2Euler232(Q) translates the gibbs vector Q into the (2-3-2) euler angle vector E. """ return EP2Euler232(gibbs2EP(q))
[docs]def gibbs2Euler312(q): """ gibbs2Euler312(Q) E = gibbs2Euler312(Q) translates the gibbs vector Q into the (3-1-2) euler angle vector E. """ return EP2Euler312(gibbs2EP(q))
[docs]def gibbs2Euler313(q): """ gibbs2Euler313(Q) E = gibbs2Euler313(Q) translates the gibbs vector Q into the (3-1-3) euler angle vector E. """ return EP2Euler313(gibbs2EP(q))
[docs]def gibbs2Euler321(q): """ gibbs2Euler321(Q) E = gibbs2Euler321(Q) translates the gibbs vector Q into the (3-2-1) euler angle vector E. """ return EP2Euler321(gibbs2EP(q))
[docs]def gibbs2Euler323(q): """ gibbs2Euler323(Q) E = gibbs2Euler323(Q) translates the gibbs vector Q into the (3-2-3) euler angle vector E. """ return EP2Euler323(gibbs2EP(q))
[docs]def gibbs2MRP(q1): """ gibbs2MRP(Q1) Q = gibbs2MRP(Q1) translates the gibbs vector Q1 into the MRP vector Q. """ return q1 / (1 + math.sqrt(1 + np.dot(q1, q1)))
[docs]def gibbs2PRV(q): """ gibbs2PRV(Q) Q = gibbs2PRV(Q1) translates the gibbs vector Q1 into the principal rotation vector Q. """ tp = np.linalg.norm(q) p = 2 * math.atan(tp) q0 = q[0] / tp * p q1 = q[1] / tp * p q2 = q[2] / tp * p q = np.array([q0, q1, q2]) return q
[docs]def MRP2C(q): """ MRP2C C = MRP2C(Q) returns the direction cosine matrix in terms of the 3x1 MRP vector Q. """ q1 = q[0] q2 = q[1] q3 = q[2] qm = np.linalg.norm(q) d1 = qm * qm S = 1 - d1 d = (1 + d1) * (1 + d1) C = np.zeros((3, 3)) C[0, 0] = 4 * (2 * q1 * q1 - d1) + S * S C[0, 1] = 8 * q1 * q2 + 4 * q3 * S C[0, 2] = 8 * q1 * q3 - 4 * q2 * S C[1, 0] = 8 * q2 * q1 - 4 * q3 * S C[1, 1] = 4 * (2 * q2 * q2 - d1) + S * S C[1, 2] = 8 * q2 * q3 + 4 * q1 * S C[2, 0] = 8 * q3 * q1 + 4 * q2 * S C[2, 1] = 8 * q3 * q2 - 4 * q1 * S C[2, 2] = 4 * (2 * q3 * q3 - d1) + S * S C = C / d return C
[docs]def MRP2EP(q1): """ MRP2EP(Q1) Q = MRP2EP(Q1) translates the MRP vector Q1 into the euler parameter vector Q. """ qm = np.linalg.norm(q1) ps = 1 + qm * qm q = np.array([ (1 - qm * qm) / ps, 2 * q1[0] / ps, 2 * q1[1] / ps, 2 * q1[2] / ps ]) return q
[docs]def MRP2Euler121(q): """ MRP2Euler121(Q) E = MRP2Euler121(Q) translates the MRP vector Q into the (1-2-1) euler angle vector E. """ return EP2Euler121(MRP2EP(q))
[docs]def MRP2Euler123(q): """ MRP2Euler123(Q) E = MRP2Euler123(Q) translates the MRP vector Q into the (1-2-3) euler angle vector E. """ return EP2Euler123(MRP2EP(q))
[docs]def MRP2Euler131(q): """ MRP2Euler131(Q) E = MRP2Euler131(Q) translates the MRP vector Q into the (1-3-1) euler angle vector E. """ return EP2Euler131(MRP2EP(q))
[docs]def MRP2Euler132(q): """ MRP2Euler132(Q) E = MRP2Euler132(Q) translates the MRP vector Q into the (1-3-2) euler angle vector E. """ return EP2Euler132(MRP2EP(q))
[docs]def MRP2Euler212(q): """ MRP2Euler212(Q) E = MRP2Euler212(Q) translates the MRP vector Q into the (2-1-2) euler angle vector E. """ return EP2Euler212(MRP2EP(q))
[docs]def MRP2Euler213(q): """ MRP2Euler213(Q) E = MRP2Euler213(Q) translates the MRP vector Q into the (2-1-3) euler angle vector E. """ return EP2Euler213(MRP2EP(q))
[docs]def MRP2Euler231(q): """ MRP2Euler231(Q) E = MRP2Euler231(Q) translates the MRP vector Q into the (2-3-1) euler angle vector E. """ return EP2Euler231(MRP2EP(q))
[docs]def MRP2Euler232(q): """ MRP2Euler232(Q) E = MRP2Euler232(Q) translates the MRP vector Q into the (2-3-2) euler angle vector E. """ return EP2Euler232(MRP2EP(q))
[docs]def MRP2Euler312(q): """ MRP2Euler312(Q) E = MRP2Euler312(Q) translates the MRP vector Q into the (3-1-2) euler angle vector E. """ return EP2Euler312(MRP2EP(q))
[docs]def MRP2Euler313(q): """ MRP2Euler313(Q) E = MRP2Euler313(Q) translates the MRP vector Q into the (3-1-3) euler angle vector E. """ return EP2Euler313(MRP2EP(q))
[docs]def MRP2Euler321(q): """ MRP2Euler321(Q) E = MRP2Euler321(Q) translates the MRP vector Q into the (3-2-1) euler angle vector E. """ return EP2Euler321(MRP2EP(q))
[docs]def MRP2Euler323(q): """ MRP2Euler323(Q) E = MRP2Euler323(Q) translates the MRP vector Q into the (3-2-3) euler angle vector E. """ return EP2Euler323(MRP2EP(q))
[docs]def MRP2Gibbs(q1): """ MRP2Gibbs(Q1) Q = MRP2Gibbs(Q1) translates the MRP vector Q1 into the gibbs vector Q. """ return 2 * q1 / (1 - np.dot(q1, q1))
[docs]def MRP2PRV(q): """ MRP2PRV(Q1) Q = MRP2PRV(Q1) translates the MRP vector Q1 into the principal rotation vector Q. """ tp = np.linalg.norm(q) p = 4 * math.atan(tp) q0 = q[0] / tp * p q1 = q[1] / tp * p q2 = q[2] / tp * p q = np.array([q0, q1, q2]) return q
[docs]def MRPswitch(q, s2): """ MRPswitch S = MRPswitch(Q,s2) checks to see if norm(Q) is larger than s2. If yes, then the MRP vector Q is mapped to its shadow set. """ q2 = np.dot(q, q) if (q2 > s2 * s2): s = -q / q2 else: s = q return s
[docs]def PRV2C(q): """ PRV2C C = PRV2C(Q) returns the direction cosine matrix in terms of the 3x1 principal rotation vector Q. """ q0 = np.linalg.norm(q) if q0 == 0.0: q1 = q[0] q2 = q[1] q3 = q[2] else: q1 = q[0] / q0 q2 = q[1] / q0 q3 = q[2] / q0 cp = np.cos(q0) sp = np.sin(q0) d1 = 1 - cp C = np.zeros((3, 3)) C[0, 0] = q1 * q1 * d1 + cp C[0, 1] = q1 * q2 * d1 + q3 * sp C[0, 2] = q1 * q3 * d1 - q2 * sp C[1, 0] = q2 * q1 * d1 - q3 * sp C[1, 1] = q2 * q2 * d1 + cp C[1, 2] = q2 * q3 * d1 + q1 * sp C[2, 0] = q3 * q1 * d1 + q2 * sp C[2, 1] = q3 * q2 * d1 - q1 * sp C[2, 2] = q3 * q3 * d1 + cp return C
[docs]def PRV2EP(qq1): """" PRV2EP(Q1) Q = PRV2EP(Q1) translates the principal rotation vector Q1 into the euler parameter vector Q. """ q = np.zeros(4) q1 = PRV2elem(qq1) sp = math.sin(q1[0] / 2) q[0] = math.cos(q1[0] / 2) q[1] = q1[1] * sp q[2] = q1[2] * sp q[3] = q1[3] * sp return q
[docs]def PRV2Euler121(q): """ PRV2Euler121(Q) E = PRV2Euler121(Q) translates the principal rotation vector Q into the (1-2-1) euler angle vector E. """ return EP2Euler121(PRV2EP(q))
[docs]def PRV2Euler123(q): """ PRV2Euler123(Q) E = PRV2Euler123(Q) translates the principal rotation vector Q into the (1-2-3) euler angle vector E. """ return EP2Euler123(PRV2EP(q))
[docs]def PRV2Euler131(q): """ PRV2Euler131(Q) E = PRV2Euler131(Q) translates the principal rotation vector Q into the (1-3-1) euler angle vector E. """ return EP2Euler131(PRV2EP(q))
[docs]def PRV2Euler132(q): """ PRV2Euler132(Q) E = PRV2Euler132(Q) translates the principal rotation vector Q into the (1-3-2) euler angle vector E. """ return EP2Euler132(PRV2EP(q))
[docs]def PRV2Euler212(q): """ PRV2Euler212(Q) E = PRV2Euler212(Q) translates the principal rotation vector Q into the (2-1-2) euler angle vector E. """ return EP2Euler212(PRV2EP(q))
[docs]def PRV2Euler213(q): """ PRV2Euler213(Q) E = PRV2Euler213(Q) translates the principal rotation vector Q into the (2-1-3) euler angle vector E. """ return EP2Euler213(PRV2EP(q))
[docs]def PRV2Euler231(q): """ PRV2Euler231(Q) E = PRV2Euler231(Q) translates the principal rotation vector Q into the (2-3-1) euler angle vector E. """ return EP2Euler231(PRV2EP(q))
[docs]def PRV2Euler232(q): """ PRV2Euler232(Q) E = PRV2Euler232(Q) translates the principal rotation vector Q into the (2-3-2) euler angle vector E. """ return EP2Euler232(PRV2EP(q))
[docs]def PRV2Euler312(q): """ PRV2Euler312(Q) E = PRV2Euler312(Q) translates the principal rotation vector Q into the (3-1-2) euler angle vector E. """ return EP2Euler312(PRV2EP(q))
[docs]def PRV2Euler313(q): """ PRV2Euler313(Q) E = PRV2Euler313(Q) translates the principal rotation vector Q into the (3-1-3) euler angle vector E. """ return EP2Euler313(PRV2EP(q))
[docs]def PRV2Euler321(q): """ PRV2Euler321(Q) E = PRV2Euler321(Q) translates the principal rotation vector Q into the (3-2-1) euler angle vector E. """ return EP2Euler321(PRV2EP(q))
[docs]def PRV2Euler323(q): """ PRV2Euler323(Q) E = PRV2Euler323(Q) translates the principal rotation vector Q into the (3-2-3) euler angle vector E. """ return EP2Euler323(PRV2EP(q))
[docs]def PRV2Gibbs(q): """ PRV2Gibbs(Q1) Q = PRV2Gibbs(Q1) translates the principal rotation vector Q1 into the gibbs vector Q. """ q = PRV2elem(q) tp = math.tan(q[0] / 2) q0 = q[1] * tp q1 = q[2] * tp q2 = q[3] * tp q = np.array([q0, q1, q2]) return q
[docs]def PRV2MRP(q): """ PRV2MRP(Q1) Q = PRV2MRP(Q1) translates the principal rotation vector Q1 into the MRP vector Q. """ q = PRV2elem(q) tp = math.tan(q[0] / 4) q0 = q[1] * tp q1 = q[2] * tp q2 = q[3] * tp q = np.array([q0, q1, q2]) return q
[docs]def subEP(b1, b2): """ subEP(B1,B2) Q = subEP(B1,B2) provides the euler parameter vector which corresponds to relative rotation from B2 to B1. """ q = np.zeros(4) q[0] = b2[0] * b1[0] + b2[1] * b1[1] + b2[2] * b1[2] + b2[3] * b1[3] q[1] = -b2[1] * b1[0] + b2[0] * b1[1] + b2[3] * b1[2] - b2[2] * b1[3] q[2] = -b2[2] * b1[0] - b2[3] * b1[1] + b2[0] * b1[2] + b2[1] * b1[3] q[3] = -b2[3] * b1[0] + b2[2] * b1[1] - b2[1] * b1[2] + b2[0] * b1[3] return q
[docs]def subEuler121(e, e1): """ subEuler121(E,E1) E2 = subEuler121(E,E1) computes the relative (1-2-1) euler angle vector from E1 to E. """ cp = math.cos(e[1]) cp1 = math.cos(e1[1]) sp = math.sin(e[1]) sp1 = math.sin(e1[1]) dum = e[0] - e1[0] e2 = np.zeros(3) e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum)) cp2 = math.cos(e2[1]) e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp)) e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2)) return e2
[docs]def subEuler123(e, e1): """ subEuler123(E,E1) E2 = subEuler123(E,E1) computes the relative (1-2-3) euler angle vector from E1 to E. """ C = euler1232C(e) C1 = euler1232C(e1) C2 = np.dot(C, C1.T) e2 = C2Euler123(C2) return e2
[docs]def subEuler131(e, e1): """ subEuler131(E,E1) E2 = subEuler131(E,E1) computes the relative (1-3-1) euler angle vector from E1 to E. """ cp = math.cos(e[1]) cp1 = math.cos(e1[1]) sp = math.sin(e[1]) sp1 = math.sin(e1[1]) dum = e[0] - e1[0] e2 = np.zeros(3) e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum)) cp2 = math.cos(e2[1]) e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp)) e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2)) return e2
[docs]def subEuler132(e, e1): """ subEuler132(E,E1) E2 = subEuler132(E,E1) computes the relative (1-3-2) euler angle vector from E1 to E. """ C = euler1322C(e) C1 = euler1322C(e1) C2 = np.dot(C, C1.T) e2 = C2Euler132(C2) return e2
[docs]def subEuler212(e, e1): """ subEuler212(E,E1) E2 = subEuler212(E,E1) computes the relative (2-1-2) euler angle vector from E1 to E. """ cp = math.cos(e[1]) cp1 = math.cos(e1[1]) sp = math.sin(e[1]) sp1 = math.sin(e1[1]) dum = e[0] - e1[0] e2 = np.zeros(3) e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum)) cp2 = math.cos(e2[1]) e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp)) e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2)) return e2
[docs]def subEuler213(e, e1): """ subEuler213(E,E1) E2 = subEuler213(E,E1) computes the relative (2-1-3) euler angle vector from E1 to E. """ C = euler2132C(e) C1 = euler2132C(e1) C2 = np.dot(C, C1.T) e2 = C2Euler213(C2) return e2
[docs]def subEuler231(e, e1): """ subEuler231(E,E1) E2 = subEuler231(E,E1) computes the relative (2-3-1) euler angle vector from E1 to E. """ C = euler2312C(e) C1 = euler2312C(e1) C2 = np.dot(C, C1.T) e2 = C2Euler231(C2) return e2
[docs]def subEuler232(e, e1): """ subEuler232(E,E1) E2 = subEuler232(E,E1) computes the relative (2-3-2) euler angle vector from E1 to E. """ cp = math.cos(e[1]) cp1 = math.cos(e1[1]) sp = math.sin(e[1]) sp1 = math.sin(e1[1]) dum = e[0] - e1[0] e2 = np.zeros(3) e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum)) cp2 = math.cos(e2[1]) e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp)) e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2)) return e2
[docs]def subEuler312(e, e1): """ subEuler312(E,E1) E2 = subEuler312(E,E1) computes the relative (3-1-2) euler angle vector from E1 to E. """ C = euler3122C(e) C1 = euler3122C(e1) C2 = np.dot(C, C1.T) e2 = C2Euler312(C2) return e2
[docs]def subEuler313(e, e1): """ subEuler313(E,E1) E2 = subEuler313(E,E1) computes the relative (3-1-3) euler angle vector from E1 to E. """ cp = math.cos(e[1]) cp1 = math.cos(e1[1]) sp = math.sin(e[1]) sp1 = math.sin(e1[1]) dum = e[0] - e1[0] e2 = np.zeros(3) e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum)) cp2 = math.cos(e2[1]) e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp)) e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2)) return e2
[docs]def subEuler321(e, e1): """ subEuler321(E,E1) E2 = subEuler321(E,E1) computes the relative (3-2-1) euler angle vector from E1 to E. """ C = euler3212C(e) C1 = euler3212C(e1) C2 = np.dot(C, C1.T) e2 = C2Euler321(C2) return e2
[docs]def subEuler323(e, e1): """ subEuler323(E,E1) E2 = subEuler323(E,E1) computes the relative (3-2-3) euler angle vector from E1 to E. """ cp = math.cos(e[1]) cp1 = math.cos(e1[1]) sp = math.sin(e[1]) sp1 = math.sin(e1[1]) dum = e[0] - e1[0] e2 = np.zeros(3) e2[1] = math.acos(cp1 * cp + sp1 * sp * math.cos(dum)) cp2 = math.cos(e2[1]) e2[0] = Picheck(-e1[2] + math.atan2(sp1 * sp * math.sin(dum), cp2 * cp1 - cp)) e2[2] = Picheck(e[2] - math.atan2(sp1 * sp * math.sin(dum), cp1 - cp * cp2)) return e2
[docs]def subGibbs(q1, q2): """ subGibbs(Q1,Q2) Q = subGibbs(Q1,Q2) provides the gibbs vector which corresponds to relative rotation from Q2 to Q1. """ return (q1 - q2 + np.cross(q1, q2)) / (1. + np.dot(q1, q2))
[docs]def subMRP(q1, q2): """ subMRP(Q1,Q2) Q = subMRP(Q1,Q2) provides the MRP vector which corresponds to relative rotation from Q2 to Q1. """ q2m = np.linalg.norm(q2) q1m = np.linalg.norm(q1) den = 1 + (q1m * q1m) * (q2m * q2m) + 2 * np.dot(q1, q2) if den < 1e-5: q2 = -q2/np.dot(q2,q2) den = 1 + (q1m * q1m) * (q2m * q2m) + 2 * np.dot(q1, q2) num = (1 - q2m * q2m) * q1 - (1 - q1m * q1m) * q2 + 2 * np.cross(q1, q2) q = num / den if np.dot(q,q)>1: q = -q/np.dot(q,q) return q
[docs]def subPRV(q1, q2): """ subPRV(Q1,Q2) Q = subPRV(Q1,Q2) provides the prinipal rotation vector which corresponds to relative principal rotation from Q2 to Q1. """ q1 = PRV2elem(q1) q2 = PRV2elem(q2) cp1 = math.cos(q1[0] / 2) cp2 = math.cos(q2[0] / 2) sp1 = math.sin(q1[0] / 2) sp2 = math.sin(q2[0] / 2) e1 = q1[1:4] e2 = q2[1:4] p = 2 * math.acos(cp1 * cp2 + sp1 * sp2 * np.dot(e1, e2)) sp = math.sin(p / 2) e = (-cp1 * sp2 * e2 + cp2 * sp1 * e1 + sp1 * sp2 * np.cross(e1, e2)) / sp q = p * e return q
[docs]def EP2C(q): """ EP2C C = EP2C(Q) returns the direction math.cosine matrix in terms of the 4x1 euler parameter vector Q. The first element is the non-dimensional euler parameter, while the remain three elements form the eulerparameter vector. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] C = np.zeros([3, 3]) C[0, 0] = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3 C[0, 1] = 2 * (q1 * q2 + q0 * q3) C[0, 2] = 2 * (q1 * q3 - q0 * q2) C[1, 0] = 2 * (q1 * q2 - q0 * q3) C[1, 1] = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3 C[1, 2] = 2 * (q2 * q3 + q0 * q1) C[2, 0] = 2 * (q1 * q3 + q0 * q2) C[2, 1] = 2 * (q2 * q3 - q0 * q1) C[2, 2] = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3 return C
[docs]def EP2Euler121(q): """ EP2Euler121(Q) E = EP2Euler121(Q) translates the euler parameter vector Q into the corresponding (1-2-1) euler angle vector E. """ t1 = math.atan2(q[3], q[2]) t2 = math.atan2(q[1], q[0]) e1 = t1 + t2 e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[1] * q[1])) e3 = t2 - t1 e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler123(q): """ EP2Euler123 Q = EP2Euler123(Q) translates the euler parameter vector Q into the corresponding (1-2-3) euler angle set. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] e1 = math.atan2(-2 * (q2 * q3 - q0 * q1), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) e2 = math.asin(2 * (q1 * q3 + q0 * q2)) e3 = math.atan2(-2 * (q1 * q2 - q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler131(q): """ EP2Euler131(Q) E = EP2Euler131(Q) translates the euler parameter vector Q into the corresponding (1-3-1) euler angle vector E. """ t1 = math.atan2(q[2], q[3]) t2 = math.atan2(q[1], q[0]) e1 = t2 - t1 e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[1] * q[1])) e3 = t2 + t1 e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler132(q): """ EP2Euler132 E = EP2Euler132(Q) translates the euler parameter vector Q into the corresponding (1-3-2) euler angle set. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] e1 = math.atan2(2 * (q2 * q3 + q0 * q1), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) e2 = math.asin(-2 * (q1 * q2 - q0 * q3)) e3 = math.atan2(2 * (q1 * q3 + q0 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler212(q): """ EP2Euler212(Q) E = EP2Euler212(Q) translates the euler parameter vector Q into the corresponding (2-1-2) euler angle vector E. """ t1 = math.atan2(q[3], q[1]) t2 = math.atan2(q[2], q[0]) e1 = t2 - t1 e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[2] * q[2])) e3 = t2 + t1 e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler213(q): """ EP2Euler213 Q = EP2Euler213(Q) translates the euler parameter vector Q into the corresponding (2-1-3) euler angle set. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] e1 = math.atan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) e2 = math.asin(-2 * (q2 * q3 - q0 * q1)) e3 = math.atan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler231(q): """ EP2Euler231 E = EP2Euler231(Q) translates the euler parameter vector Q into the corresponding (2-3-1) euler angle set. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] e1 = math.atan2(-2 * (q1 * q3 - q0 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) e2 = math.asin(2 * (q1 * q2 + q0 * q3)) e3 = math.atan2(-2 * (q2 * q3 - q0 * q1), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler232(q): """ EP2Euler232(Q) E = EP2Euler232(Q) translates the euler parameter vector Q into the corresponding (2-3-2) euler angle vector E. """ t1 = math.atan2(q[1], q[3]) t2 = math.atan2(q[2], q[0]) e1 = t1 + t2 e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[2] * q[2])) e3 = t2 - t1 e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler312(q): """ EP2Euler312 E = EP2Euler312(Q) translates the euler parameter vector Q into the corresponding (3-1-2) euler angle set. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] e1 = math.atan2(-2 * (q1 * q2 - q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3) e2 = math.asin(2 * (q2 * q3 + q0 * q1)) e3 = math.atan2(-2 * (q1 * q3 - q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler313(q): """ EP2Euler313(Q) E = EP2Euler313(Q) translates the euler parameter vector Q into the corresponding (3-1-3) euler angle vector E. """ t1 = math.atan2(q[2], q[1]) t2 = math.atan2(q[3], q[0]) e1 = t1 + t2 e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[3] * q[3])) e3 = t2 - t1 e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler321(q): """ EP2Euler321 E = EP2Euler321(Q) translates the euler parameter vector Q into the corresponding (3-2-1) euler angle set. """ q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] e1 = math.atan2(2 * (q1 * q2 + q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) e2 = math.asin(-2 * (q1 * q3 - q0 * q2)) e3 = math.atan2(2 * (q2 * q3 + q0 * q1), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) e = np.array([e1, e2, e3]) return e
[docs]def EP2Euler323(q): """ EP2Euler323(Q) E = EP2Euler323(Q) translates the euler parameter vector Q into the corresponding (3-2-3) euler angle vector E. """ t1 = math.atan2(q[1], q[2]) t2 = math.atan2(q[3], q[0]) e1 = t2 - t1 e2 = 2 * math.acos(math.sqrt(q[0] * q[0] + q[3] * q[3])) e3 = t2 + t1 e = np.array([e1, e2, e3]) return e
[docs]def EP2Gibbs(q): """ EP2Gibbs(Q1) Q = EP2Gibbs(Q1) translates the euler parameter vector Q1 into the gibbs vector Q. """ q1 = q[1] / q[0] q2 = q[2] / q[0] q3 = q[3] / q[0] return np.array([q1, q2, q3])
[docs]def EP2MRP(q): """ EP2MRP(Q1) Q = EP2MRP(Q1) translates the euler parameter vector Q1 into the MRP vector Q. """ if q[0] < 0: q = -q q1 = q[1] / (1 + q[0]) q2 = q[2] / (1 + q[0]) q3 = q[3] / (1 + q[0]) return np.array([q1, q2, q3])
[docs]def EP2PRV(q): """ EP2PRV(Q1) Q = EP2PRV(Q1) translates the euler parameter vector Q1 into the principal rotation vector Q. """ p = 2 * math.acos(q[0]) sp = math.sin(p / 2) q1 = q[1] / sp * p q2 = q[2] / sp * p q3 = q[3] / sp * p return np.array([q1, q2, q3])
[docs]def euler1(x): """ EULER1 Elementary rotation matrix Returns the elementary rotation matrix about the first body axis. """ m = np.identity(3) m[1, 1] = math.cos(x) m[1, 2] = math.sin(x) m[2, 1] = -m[1, 2] m[2, 2] = m[1, 1] return m
[docs]def euler2(x): """ EULER2 Elementary rotation matrix Returns the elementary rotation matrix about the second body axis. """ m = np.identity(3) m[0, 0] = math.cos(x) m[0, 2] = -math.sin(x) m[2, 0] = -m[0, 2] m[2, 2] = m[0, 0] return m
[docs]def euler3(x): """ EULER3 Elementary rotation matrix Returns the elementary rotation matrix about the third body axis. """ m = np.identity(3) m[0, 0] = math.cos(x) m[0, 1] = math.sin(x) m[1, 0] = -m[0, 1] m[1, 1] = m[0, 0] return m
[docs]def euler1212C(q): """ Euler1212C C = euler1212C(Q) returns the direction cosine matrix in terms of the 1-2-1 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct2 C[0, 1] = st1 * st2 C[0, 2] = -ct1 * st2 C[1, 0] = st2 * st3 C[1, 1] = ct1 * ct3 - ct2 * st1 * st3 C[1, 2] = ct3 * st1 + ct1 * ct2 * st3 C[2, 0] = ct3 * st2 C[2, 1] = -ct2 * ct3 * st1 - ct1 * st3 C[2, 2] = ct1 * ct2 * ct3 - st1 * st3 return C
[docs]def euler1212EP(e): """ Euler1212EP(E) Q = euler1212EP(E) translates the 121 euler angle vector E into the euler parameter vector Q. """ e1 = e[0] / 2 e2 = e[1] / 2 e3 = e[2] / 2 q0 = math.cos(e2) * math.cos(e1 + e3) q1 = math.cos(e2) * math.sin(e1 + e3) q2 = math.sin(e2) * math.cos(e1 - e3) q3 = math.sin(e2) * math.sin(e1 - e3) return np.array([q0, q1, q2, q3])
[docs]def euler1212Gibbs(e): """ Euler1212Gibbs(E) Q = euler1212Gibbs(E) translates the (1-2-1) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler1212EP(e))
[docs]def euler1212MRP(e): """ euler1212MRP(E) Q = euler1212MRP(E) translates the (1-2-1) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler1212EP(e))
[docs]def euler1212PRV(e): """ euler1212PRV(E) Q = euler1212PRV(E) translates the (1-2-1) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler1212EP(e))
[docs]def euler1232C(q): """ euler1232C C = euler1232C(Q) returns the direction cosine matrix in terms of the 1-2-3 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct2 * ct3 C[0, 1] = ct3 * st1 * st2 + ct1 * st3 C[0, 2] = st1 * st3 - ct1 * ct3 * st2 C[1, 0] = -ct2 * st3 C[1, 1] = ct1 * ct3 - st1 * st2 * st3 C[1, 2] = ct3 * st1 + ct1 * st2 * st3 C[2, 0] = st2 C[2, 1] = -ct2 * st1 C[2, 2] = ct1 * ct2 return C
[docs]def euler1232EP(e): """ euler1232EP(E) Q = euler1232EP(E) translates the 123 euler angle vector E into the euler parameter vector Q. """ c1 = math.cos(e[0] / 2) s1 = math.sin(e[0] / 2) c2 = math.cos(e[1] / 2) s2 = math.sin(e[1] / 2) c3 = math.cos(e[2] / 2) s3 = math.sin(e[2] / 2) q0 = c1 * c2 * c3 - s1 * s2 * s3 q1 = s1 * c2 * c3 + c1 * s2 * s3 q2 = c1 * s2 * c3 - s1 * c2 * s3 q3 = c1 * c2 * s3 + s1 * s2 * c3 return np.array([q0, q1, q2, q3])
[docs]def euler1232Gibbs(e): """ euler1232Gibbs(E) Q = euler1232Gibbs(E) translates the (1-2-3) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler1232EP(e))
[docs]def euler1232MRP(e): """ euler1232MRP(E) Q = euler1232MRP(E) translates the (1-2-3) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler1232EP(e))
[docs]def euler1232PRV(e): """ euler1232PRV(E) Q = euler1232PRV(E) translates the (1-2-3) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler1232EP(e))
[docs]def euler1312C(q): """ euler1312C C = euler1312C(Q) returns the direction cosine matrix in terms of the 1-3-1 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct2 C[0, 1] = ct1 * st2 C[0, 2] = st1 * st2 C[1, 0] = -ct3 * st2 C[1, 1] = ct1 * ct2 * ct3 - st1 * st3 C[1, 2] = ct2 * ct3 * st1 + ct1 * st3 C[2, 0] = st2 * st3 C[2, 1] = -ct3 * st1 - ct1 * ct2 * st3 C[2, 2] = ct1 * ct3 - ct2 * st1 * st3 return C
[docs]def euler1312EP(e): """ euler1312EP(E) Q = euler1312EP(E) translates the 131 euler angle vector E into the euler parameter vector Q. """ e1 = e[0] / 2 e2 = e[1] / 2 e3 = e[2] / 2 q0 = math.cos(e2) * math.cos(e1 + e3) q1 = math.cos(e2) * math.sin(e1 + e3) q2 = math.sin(e2) * math.sin(-e1 + e3) q3 = math.sin(e2) * math.cos(-e1 + e3) return np.array([q0, q1, q2, q3])
[docs]def euler1312Gibbs(e): """ euler1312Gibbs(E) Q = euler1312Gibbs(E) translates the (1-3-1) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler1312EP(e))
[docs]def euler1312MRP(e): """ euler1312MRP(E) Q = euler1312MRP(E) translates the (1-3-1) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler1312EP(e))
[docs]def euler1312PRV(e): """ euler1312PRV(E) Q = euler1312PRV(E) translates the (1-3-1) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler1312EP(e))
[docs]def euler1322C(q): """ euler1322C C = euler1322C(Q) returns the direction cosine matrix in terms of the 1-3-2 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct2 * ct3 C[0, 1] = ct1 * ct3 * st2 + st1 * st3 C[0, 2] = ct3 * st1 * st2 - ct1 * st3 C[1, 0] = -st2 C[1, 1] = ct1 * ct2 C[1, 2] = ct2 * st1 C[2, 0] = ct2 * st3 C[2, 1] = -ct3 * st1 + ct1 * st2 * st3 C[2, 2] = ct1 * ct3 + st1 * st2 * st3 return C
[docs]def euler1322EP(e): """ euler1322EP(E) Q = euler1322EP(E) translates the 132 euler angle vector E into the euler parameter vector Q. """ c1 = math.cos(e[0] / 2) s1 = math.sin(e[0] / 2) c2 = math.cos(e[1] / 2) s2 = math.sin(e[1] / 2) c3 = math.cos(e[2] / 2) s3 = math.sin(e[2] / 2) q0 = c1 * c2 * c3 + s1 * s2 * s3 q1 = s1 * c2 * c3 - c1 * s2 * s3 q2 = c1 * c2 * s3 - s1 * s2 * c3 q3 = c1 * s2 * c3 + s1 * c2 * s3 return np.array([q0, q1, q2, q3])
[docs]def euler1322Gibbs(e): """ euler1322Gibbs(E) Q = euler1322Gibbs(E) translates the (1-3-2) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler1322EP(e))
[docs]def euler1322MRP(e): """ euler1322MRP(E) Q = euler1322MRP(E) translates the (1-3-2) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler1322EP(e))
[docs]def euler1322PRV(e): """ euler1322PRV(E) Q = euler1322PRV(E) translates the (1-3-2) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler1322EP(e))
[docs]def euler2122C(q): """ euler2122C C = euler2122C(Q) returns the direction cosine matrix in terms of the 2-1-2 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct1 * ct3 - ct2 * st1 * st3 C[0, 1] = st2 * st3 C[0, 2] = -ct3 * st1 - ct1 * ct2 * st3 C[1, 0] = st1 * st2 C[1, 1] = ct2 C[1, 2] = ct1 * st2 C[2, 0] = ct2 * ct3 * st1 + ct1 * st3 C[2, 1] = -ct3 * st2 C[2, 2] = ct1 * ct2 * ct3 - st1 * st3 return C
[docs]def euler2132C(q): """ euler2132C C = euler2132C(Q) returns the direction cosine matrix in terms of the 2-1-3 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct1 * ct3 + st1 * st2 * st3 C[0, 1] = ct2 * st3 C[0, 2] = -ct3 * st1 + ct1 * st2 * st3 C[1, 0] = ct3 * st1 * st2 - ct1 * st3 C[1, 1] = ct2 * ct3 C[1, 2] = ct1 * ct3 * st2 + st1 * st3 C[2, 0] = ct2 * st1 C[2, 1] = -st2 C[2, 2] = ct1 * ct2 return C
[docs]def euler2312C(q): """ euler2312C C = euler2312C(Q) returns the direction cosine matrix in terms of the 2-3-1 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct1 * ct2 C[0, 1] = st2 C[0, 2] = -ct2 * st1 C[1, 0] = -ct1 * ct3 * st2 + st1 * st3 C[1, 1] = ct2 * ct3 C[1, 2] = ct3 * st1 * st2 + ct1 * st3 C[2, 0] = ct3 * st1 + ct1 * st2 * st3 C[2, 1] = -ct2 * st3 C[2, 2] = ct1 * ct3 - st1 * st2 * st3 return C
[docs]def euler2322C(q): """ euler2322C C = euler2322C(Q) returns the direction cosine matrix in terms of the 2-3-2 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct1 * ct2 * ct3 - st1 * st3 C[0, 1] = ct3 * st2 C[0, 2] = -ct2 * ct3 * st1 - ct1 * st3 C[1, 0] = -ct1 * st2 C[1, 1] = ct2 C[1, 2] = st1 * st2 C[2, 0] = ct3 * st1 + ct1 * ct2 * st3 C[2, 1] = st2 * st3 C[2, 2] = ct1 * ct3 - ct2 * st1 * st3 return C
[docs]def euler3122C(q): """ euler3122C C = euler3122C(Q) returns the direction cosine matrix in terms of the 1-2-3 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct1 * ct3 - st1 * st2 * st3 C[0, 1] = ct3 * st1 + ct1 * st2 * st3 C[0, 2] = -ct2 * st3 C[1, 0] = -ct2 * st1 C[1, 1] = ct1 * ct2 C[1, 2] = st2 C[2, 0] = ct3 * st1 * st2 + ct1 * st3 C[2, 1] = st1 * st3 - ct1 * ct3 * st2 C[2, 2] = ct2 * ct3 return C
[docs]def euler3132C(q): """ euler3132C C = euler3132C(Q) returns the direction cosine matrix in terms of the 3-1-3 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct3 * ct1 - st3 * ct2 * st1 C[0, 1] = ct3 * st1 + st3 * ct2 * ct1 C[0, 2] = st3 * st2 C[1, 0] = -st3 * ct1 - ct3 * ct2 * st1 C[1, 1] = -st3 * st1 + ct3 * ct2 * ct1 C[1, 2] = ct3 * st2 C[2, 0] = st2 * st1 C[2, 1] = -st2 * ct1 C[2, 2] = ct2 return C
[docs]def euler3212C(q): """ euler3212C C = euler3212C(Q) returns the direction cosine matrix in terms of the 3-2-1 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct2 * ct1 C[0, 1] = ct2 * st1 C[0, 2] = -st2 C[1, 0] = st3 * st2 * ct1 - ct3 * st1 C[1, 1] = st3 * st2 * st1 + ct3 * ct1 C[1, 2] = st3 * ct2 C[2, 0] = ct3 * st2 * ct1 + st3 * st1 C[2, 1] = ct3 * st2 * st1 - st3 * ct1 C[2, 2] = ct3 * ct2 return C
[docs]def euler3232C(q): """ euler3232C C = euler3232C(Q) returns the direction cosine matrix in terms of the 3-2-3 euler angles. Input Q must be a 3x1 vector of euler angles. """ st1 = math.sin(q[0]) ct1 = math.cos(q[0]) st2 = math.sin(q[1]) ct2 = math.cos(q[1]) st3 = math.sin(q[2]) ct3 = math.cos(q[2]) C = np.identity(3) C[0, 0] = ct1 * ct2 * ct3 - st1 * st3 C[0, 1] = ct2 * ct3 * st1 + ct1 * st3 C[0, 2] = -ct3 * st2 C[1, 0] = -ct3 * st1 - ct1 * ct2 * st3 C[1, 1] = ct1 * ct3 - ct2 * st1 * st3 C[1, 2] = st2 * st3 C[2, 0] = ct1 * st2 C[2, 1] = st1 * st2 C[2, 2] = ct2 return C
[docs]def euler2122EP(e): """ euler2122EP(E) Q = euler2122EP(E) translates the 212 euler angle vector E into the euler parameter vector Q. """ e1 = e[0] / 2 e2 = e[1] / 2 e3 = e[2] / 2 q0 = math.cos(e2) * math.cos(e1 + e3) q1 = math.sin(e2) * math.cos(-e1 + e3) q2 = math.cos(e2) * math.sin(e1 + e3) q3 = math.sin(e2) * math.sin(-e1 + e3) return np.array([q0, q1, q2, q3])
[docs]def euler2132EP(e): """ euler2132EP(E) Q = euler2132EP(E) translates the 213 euler angle vector E into the euler parameter vector Q. """ c1 = math.cos(e[0] / 2) s1 = math.sin(e[0] / 2) c2 = math.cos(e[1] / 2) s2 = math.sin(e[1] / 2) c3 = math.cos(e[2] / 2) s3 = math.sin(e[2] / 2) q0 = c1 * c2 * c3 + s1 * s2 * s3 q1 = c1 * s2 * c3 + s1 * c2 * s3 q2 = s1 * c2 * c3 - c1 * s2 * s3 q3 = c1 * c2 * s3 - s1 * s2 * c3 return np.array([q0, q1, q2, q3])
[docs]def euler2312EP(e): """ euler2312EP(E) Q = euler2312EP(E) translates the 231 euler angle vector E into the euler parameter vector Q. """ c1 = math.cos(e[0] / 2) s1 = math.sin(e[0] / 2) c2 = math.cos(e[1] / 2) s2 = math.sin(e[1] / 2) c3 = math.cos(e[2] / 2) s3 = math.sin(e[2] / 2) q0 = c1 * c2 * c3 - s1 * s2 * s3 q1 = c1 * c2 * s3 + s1 * s2 * c3 q2 = s1 * c2 * c3 + c1 * s2 * s3 q3 = c1 * s2 * c3 - s1 * c2 * s3 return np.array([q0, q1, q2, q3])
[docs]def euler2322EP(e): """ euler2322EP(E) Q = euler2322EP(E) translates the 232 euler angle vector E into the euler parameter vector Q. """ e1 = e[0] / 2 e2 = e[1] / 2 e3 = e[2] / 2 q0 = math.cos(e2) * math.cos(e1 + e3) q1 = math.sin(e2) * math.sin(e1 - e3) q2 = math.cos(e2) * math.sin(e1 + e3) q3 = math.sin(e2) * math.cos(e1 - e3) return np.array([q0, q1, q2, q3])
[docs]def euler3122EP(e): """ euler3122EP(E) Q = euler3122EP(E) translates the 312 euler angle vector E into the euler parameter vector Q. """ c1 = math.cos(e[0] / 2) s1 = math.sin(e[0] / 2) c2 = math.cos(e[1] / 2) s2 = math.sin(e[1] / 2) c3 = math.cos(e[2] / 2) s3 = math.sin(e[2] / 2) q0 = c1 * c2 * c3 - s1 * s2 * s3 q1 = c1 * s2 * c3 - s1 * c2 * s3 q2 = c1 * c2 * s3 + s1 * s2 * c3 q3 = s1 * c2 * c3 + c1 * s2 * s3 return np.array([q0, q1, q2, q3])
[docs]def euler3132EP(e): """ euler3132EP(E) Q = euler3132EP(E) translates the 313 euler angle vector E into the euler parameter vector Q. """ e1 = e[0] / 2 e2 = e[1] / 2 e3 = e[2] / 2 q0 = math.cos(e2) * math.cos(e1 + e3) q1 = math.sin(e2) * math.cos(e1 - e3) q2 = math.sin(e2) * math.sin(e1 - e3) q3 = math.cos(e2) * math.sin(e1 + e3) return np.array([q0, q1, q2, q3])
[docs]def euler3212EP(e): """ euler3212EP(E) Q = euler3212EP(E) translates the 321 euler angle vector E into the euler parameter vector Q. """ c1 = math.cos(e[0] / 2) s1 = math.sin(e[0] / 2) c2 = math.cos(e[1] / 2) s2 = math.sin(e[1] / 2) c3 = math.cos(e[2] / 2) s3 = math.sin(e[2] / 2) q0 = c1 * c2 * c3 + s1 * s2 * s3 q1 = c1 * c2 * s3 - s1 * s2 * c3 q2 = c1 * s2 * c3 + s1 * c2 * s3 q3 = s1 * c2 * c3 - c1 * s2 * s3 return np.array([q0, q1, q2, q3])
[docs]def euler3232EP(e): """ euler3232EP(E) Q = euler3232EP(E) translates the 323 euler angle vector E into the euler parameter vector Q. """ e1 = e[0] / 2 e2 = e[1] / 2 e3 = e[2] / 2 q0 = math.cos(e2) * math.cos(e1 + e3) q1 = math.sin(e2) * math.sin(-e1 + e3) q2 = math.sin(e2) * math.cos(-e1 + e3) q3 = math.cos(e2) * math.sin(e1 + e3) return np.array([q0, q1, q2, q3])
[docs]def euler2122Gibbs(e): """ euler2122Gibbs(E) Q = euler2122Gibbs(E) translates the (2-1-2) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler2122EP(e))
[docs]def euler2122MRP(e): """ euler2122MRP(E) Q = euler2122MRP(E) translates the (2-1-2) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler2122EP(e))
[docs]def euler2122PRV(e): """ euler2122PRV(E) Q = euler2122PRV(E) translates the (2-1-2) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler2122EP(e))
[docs]def euler2132Gibbs(e): """ euler2132Gibbs(E) Q = euler2132Gibbs(E) translates the (2-1-3) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler2132EP(e))
[docs]def euler2132MRP(e): """ euler2132MRP(E) Q = euler2132MRP(E) translates the (2-1-3) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler2132EP(e))
[docs]def euler2132PRV(e): """ euler2132PRV(E) Q = euler2132PRV(E) translates the (2-1-3) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler2132EP(e))
[docs]def euler2312Gibbs(e): """ euler2312Gibbs(E) Q = euler2312Gibbs(E) translates the (2-3-1) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler2312EP(e))
[docs]def euler2312MRP(e): """ euler2312MRP(E) Q = euler2312MRP(E) translates the (2-3-1) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler2312EP(e))
[docs]def euler2312PRV(e): """ euler2312PRV(E) Q = euler2312PRV(E) translates the (2-3-1) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler2312EP(e))
[docs]def euler2322Gibbs(e): """ euler2322Gibbs(E) Q = euler2322Gibbs(E) translates the (2-3-2) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler2322EP(e))
[docs]def euler2322MRP(e): """ euler2322MRP(E) Q = euler2322MRP(E) translates the (2-3-2) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler2322EP(e))
[docs]def euler2322PRV(e): """ euler2322PRV(E) Q = euler2322PRV(E) translates the (2-3-2) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler2322EP(e))
[docs]def euler3122Gibbs(e): """ euler3122Gibbs(E) Q = euler3122Gibbs(E) translates the (3-1-2) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler3122EP(e))
[docs]def euler3122MRP(e): """ euler3122MRP(E) Q = euler3122MRP(E) translates the (3-1-2) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler3122EP(e))
[docs]def euler3122PRV(e): """ euler3122PRV(E) Q = euler3122PRV(E) translates the (3-1-2) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler3122EP(e))
[docs]def euler3132Gibbs(e): """ euler3132Gibbs(E) Q = euler3132Gibbs(E) translates the (3-1-3) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler3132EP(e))
[docs]def euler3132MRP(e): """ euler3132MRP(E) Q = euler3132MRP(E) translates the (3-1-3) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler3132EP(e))
[docs]def euler3132PRV(e): """ euler3132PRV(E) Q = euler3132PRV(E) translates the (3-1-3) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler3132EP(e))
[docs]def euler3212Gibbs(e): """ euler3212Gibbs(E) Q = euler3212Gibbs(E) translates the (3-2-1) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler3212EP(e))
[docs]def euler3212MRP(e): """ euler3212MRP(E) Q = euler3212MRP(E) translates the (3-2-1) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler3212EP(e))
[docs]def euler3212PRV(e): """ euler3212PRV(E) Q = euler3212PRV(E) translates the (3-2-1) euler angle vector E into the principal rotation vector Q. """ return EP2PRV(euler3212EP(e))
[docs]def euler3232Gibbs(e): """ euler3232Gibbs(E) Q = euler3232Gibbs(E) translates the (3-2-3) euler angle vector E into the gibbs vector Q. """ return EP2Gibbs(euler3232EP(e))
[docs]def euler3232MRP(e): """ euler3232MRP(E) Q = euler3232MRP(E) translates the (3-2-3) euler angle vector E into the MRP vector Q. """ return EP2MRP(euler3232EP(e))
[docs]def euler3232PRV(e): """ euler3232PRV(E) Q = euler3232PRV(E) translates the (3-2-3) euler angle vector Q1 into the principal rotation vector Q. """ return EP2PRV(euler3232EP(e))
def Mi(theta, i): c = np.cos(theta) s = np.sin(theta) case = i C = np.zeros((3, 3)) if case == 1: C[0][0] = 1. C[0][1] = 0. C[0][2] = 0. C[1][0] = 0. C[1][1] = c C[1][2] = s C[2][0] = 0. C[2][1] = -s C[2][2] = c elif case == 2: C[0][0] = c C[0][1] = 0. C[0][2] = -s C[1][0] = 0. C[1][1] = 1. C[1][2] = 0. C[2][0] = s C[2][1] = 0. C[2][2] = c elif case == 3: C[0][0] = c C[0][1] = s C[0][2] = 0. C[1][0] = -s C[1][1] = c C[1][2] = 0. C[2][0] = 0. C[2][1] = 0. C[2][2] = 1. else: print('Mi() error: incorrect axis', i, 'selected') return C def v3Tilde(vector): x1 = vector[0] x2 = vector[1] x3 = vector[2] xTilde = [[0, -x3, x2] ,[x3, 0, -x1] ,[-x2, x1, 0] ] return xTilde