# ISC License
#
# Copyright (c) 2016-2017, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import inspect
import os
import numpy as np
import pytest
from Basilisk import __path__
from Basilisk.architecture import messaging
from Basilisk.simulation import groundLocation
from Basilisk.simulation import spacecraft
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simIncludeGravBody
from Basilisk.utilities import unitTestSupport
from matplotlib import pyplot as plt
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
bskPath = __path__[0]
[docs]
def test_range(show_plots):
"""
Tests whether groundLocation:
1. Computes range correctly by evaluating slantRange;
2. Tests whether elevation is correctly evaluated;
3. Tests whether range limits impact access.
4. Tests whether multiple spacecraft are supported in parallel
:return:
"""
simTaskName = "simTask"
simProcessName = "simProcess"
scSim = SimulationBaseClass.SimBaseClass()
dynProcess = scSim.CreateNewProcess(simProcessName)
simulationTime = macros.sec2nano(10.)
simulationTimeStep = macros.sec2nano(1.)
dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep))
# Initialize new atmosphere and drag model, add them to task
groundTarget = groundLocation.GroundLocation()
groundTarget.ModelTag = "groundTarget"
groundTarget.planetRadius = orbitalMotion.REQ_EARTH * 1000.
groundTarget.maximumRange = 100e3 # meters
groundTarget.minimumElevation = np.radians(80.)
groundTarget.specifyLocation(np.radians(0.), np.radians(0.), 0.)
scSim.AddModelToTask(simTaskName, groundTarget)
# Write out mock planet rotation, spacecraft position messages
sc1_message = messaging.SCStatesMsgPayload()
sc1_message.r_BN_N = [orbitalMotion.REQ_EARTH*1e3 + 100e3, 0, 0] # SC1 is in range
sc1Msg = messaging.SCStatesMsg().write(sc1_message)
sc2_message = messaging.SCStatesMsgPayload()
# SC2 is placed inside/outside the visibility cone for the ground station
sc2_message.r_BN_N = [orbitalMotion.REQ_EARTH*1e3 + 101e3,0, 0]
sc2Msg = messaging.SCStatesMsg().write(sc2_message)
sc3_message = messaging.SCStatesMsgPayload()
# SC3 is inside the altitude limit, but outside the visibility cone
sc3_message.r_BN_N = rbk.euler3(np.radians(11.)).dot(np.array([100e3, 0, 0])) + np.array(
[orbitalMotion.REQ_EARTH * 1e3, 0, 0])
sc3Msg = messaging.SCStatesMsg().write(sc3_message)
groundTarget.addSpacecraftToModel(sc1Msg)
groundTarget.addSpacecraftToModel(sc2Msg)
groundTarget.addSpacecraftToModel(sc3Msg)
# Log the access indicator
numDataPoints = 2
samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints)
dataLog0 = groundTarget.accessOutMsgs[0].recorder(samplingTime)
dataLog1 = groundTarget.accessOutMsgs[1].recorder(samplingTime)
dataLog2 = groundTarget.accessOutMsgs[2].recorder(samplingTime)
scSim.AddModelToTask(simTaskName, dataLog0)
scSim.AddModelToTask(simTaskName, dataLog1)
scSim.AddModelToTask(simTaskName, dataLog2)
# Run the sim
scSim.InitializeSimulation()
scSim.ConfigureStopTime(simulationTime)
scSim.ExecuteSimulation()
# Get the logged data
sc1_access = dataLog0.hasAccess
sc1_slant = dataLog0.slantRange
sc1_elevation = dataLog0.elevation
sc2_access = dataLog1.hasAccess
sc2_slant = dataLog1.slantRange
sc2_elevation = dataLog1.elevation
sc3_access = dataLog2.hasAccess
sc3_slant = dataLog2.slantRange
sc3_elevation = dataLog2.elevation
# Compare to expected values
accuracy = 1e-8
ref_ranges = [100e3, 101e3, 100e3]
ref_elevation = [np.radians(90.), np.radians(90.), np.radians(79.)]
ref_access = [1, 0, 0]
test_ranges = [sc1_slant[1], sc2_slant[1], sc3_slant[1]]
test_elevation = [sc1_elevation[1],sc2_elevation[1],sc3_elevation[1]]
test_access = [sc1_access[1],sc2_access[1],sc3_access[1]]
range_worked = test_ranges == pytest.approx(ref_ranges, accuracy)
elevation_worked = test_elevation == pytest.approx(ref_elevation, accuracy)
access_worked = test_access == pytest.approx(ref_access, abs=1e-16)
assert (range_worked and elevation_worked and access_worked)
[docs]
def test_rotation(show_plots):
"""
Tests whether groundLocation:
1. Computes the current location based on the initial position and the rotation rate of the planet
it is attached to.
:return:
"""
simTime = 1.
simTaskName = "simTask"
simProcessName = "simProcess"
scSim = SimulationBaseClass.SimBaseClass()
dynProcess = scSim.CreateNewProcess(simProcessName)
simulationTime = macros.sec2nano(simTime)
simulationTimeStep = macros.sec2nano(1.)
dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep))
# Initialize new atmosphere and drag model, add them to task
groundTarget = groundLocation.GroundLocation()
groundTarget.ModelTag = "groundTarget"
groundTarget.planetRadius = orbitalMotion.REQ_EARTH * 1000.
groundTarget.maximumRange = 200e3 # meters
groundTarget.minimumElevation = np.radians(10.)
groundTarget.specifyLocation(np.radians(0.), np.radians(10.), 0.)
scSim.AddModelToTask(simTaskName, groundTarget)
# Write out mock planet rotation, spacecraft position messages
sc1_message = messaging.SCStatesMsgPayload()
sc1_message.r_BN_N = np.array([orbitalMotion.REQ_EARTH*1e3 + 90e3, 0, 0]) # SC1 is in range
scMsg = messaging.SCStatesMsg().write(sc1_message)
groundTarget.addSpacecraftToModel(scMsg)
planet_message = messaging.SpicePlanetStateMsgPayload()
planet_message.J20002Pfix = rbk.euler3(np.radians(-10.)).tolist()
planetMsg = messaging.SpicePlanetStateMsg().write(planet_message)
groundTarget.planetInMsg.subscribeTo(planetMsg)
# Log the access indicator
numDataPoints = 2
samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints)
dataLog = groundTarget.accessOutMsgs[0].recorder(samplingTime)
scSim.AddModelToTask(simTaskName, dataLog)
# Run the sim
scSim.InitializeSimulation()
scSim.ConfigureStopTime(simulationTime)
scSim.ExecuteSimulation()
# Get the logged data
sc1_access = dataLog.hasAccess
sc1_slant = dataLog.slantRange
sc1_elevation = dataLog.elevation
sc1_azimuth = dataLog.azimuth
# Compare to expected values
accuracy = 1e-8
ref_ranges = [90e3]
ref_elevation = [np.radians(90.)]
ref_access = [1]
test_ranges = [sc1_slant[1]]
test_elevation = [sc1_elevation[1]]
test_access = [sc1_access[1]]
range_worked = test_ranges == pytest.approx(ref_ranges, accuracy)
elevation_worked = test_elevation == pytest.approx(ref_elevation, accuracy)
access_worked = test_access == pytest.approx(ref_access, abs=1e-16)
assert (range_worked and elevation_worked and access_worked)
[docs]
def test_AzElR_rates():
"""
Tests that the Az,El,range rates are correct by using 1-step Euler integration
:return:
"""
simTaskName = "simTask"
simProcessName = "simProcess"
scSim = SimulationBaseClass.SimBaseClass()
dynProcess = scSim.CreateNewProcess(simProcessName)
dt = 1.0
simulationTimeStep = macros.sec2nano(dt)
simulationTime = simulationTimeStep
dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep))
gravFactory = simIncludeGravBody.gravBodyFactory()
planet = gravFactory.createEarth()
mu = planet.mu
planet.isCentralBody = True
timeInitString = '2021 MAY 04 06:47:48.965 (UTC)'
gravFactory.createSpiceInterface(bskPath + '/supportData/EphemerisData/'
, timeInitString
)
gravFactory.spiceObject.zeroBase = 'Earth'
scSim.AddModelToTask(simTaskName, gravFactory.spiceObject, -1)
scObject = spacecraft.Spacecraft()
scObject.gravField.gravBodies = spacecraft.GravBodyVector(list(gravFactory.gravBodies.values()))
scSim.AddModelToTask(simTaskName, scObject)
oe = orbitalMotion.ClassicElements()
r_sc = planet.radEquator + 100*1E3
oe.a = r_sc
oe.e = 0.00001
oe.i = 53.0*macros.D2R
oe.Omega = 115.0*macros.D2R
oe.omega = 5.0*macros.D2R
oe.f = 75.*macros.D2R
rN, vN = orbitalMotion.elem2rv(mu, oe)
scObject.hub.r_CN_NInit = rN
scObject.hub.v_CN_NInit = vN
groundStation = groundLocation.GroundLocation()
groundStation.planetRadius = planet.radEquator
groundStation.specifyLocation(np.radians(40.009971), np.radians(-105.243895), 1624)
groundStation.planetInMsg.subscribeTo(gravFactory.spiceObject.planetStateOutMsgs[0])
groundStation.minimumElevation = np.radians(60.)
groundStation.addSpacecraftToModel(scObject.scStateOutMsg)
scSim.AddModelToTask(simTaskName, groundStation)
# Log the Az,El,R and rates info
numDataPoints = 2
samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints)
dataLog = groundStation.accessOutMsgs[0].recorder(samplingTime)
scSim.AddModelToTask(simTaskName, dataLog)
# Run the sim
scSim.InitializeSimulation()
scSim.ConfigureStopTime(simulationTime)
scSim.ExecuteSimulation()
# Get logged data
sc_range = dataLog.slantRange
sc_elevation = dataLog.elevation
sc_azimuth = dataLog.azimuth
sc_range_rate = dataLog.range_dot
sc_el_rate = dataLog.el_dot
sc_az_rate = dataLog.az_dot
# Euler integration
sc_Euler_range = sc_range[0] + sc_range_rate[0]*dt
sc_Euler_elev = sc_elevation[0] + sc_el_rate[0]*dt
sc_Euler_azimuth = sc_azimuth[0] + sc_az_rate[0]*dt
range_rate_worked = sc_range[1] == pytest.approx(sc_Euler_range, rel=1e-5)
el_rate_worked = sc_elevation[1] == pytest.approx(sc_Euler_elev, rel=1e-5)
az_rate_worked = sc_azimuth[1] == pytest.approx(sc_Euler_azimuth, rel=1e-5)
assert (range_rate_worked and el_rate_worked and az_rate_worked)
[docs]
def plot_geometry(groundLocation, scLocations, minimumElevation):
"""
Plots the location of a ground station, its field of view, and the positions of two spacecraft to verify whether
the spacecraft have access to the ground station.
:param groundLocation: [3,] : an ECI ground position.
:param scLocations: [3,2] : two spacecraft position vectors
:param minimumElevation: double : minimum view elevation angle in degrees.
:return:
"""
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
# draw sphere
u, v = np.mgrid[0:2 * np.pi:20j, 0:np.pi:20j]
x = orbitalMotion.REQ_EARTH*1000 * np.cos(u) * np.sin(v)
y = orbitalMotion.REQ_EARTH*1000 *np.sin(u) * np.sin(v)
z = orbitalMotion.REQ_EARTH*1000 *np.cos(v)
ax.plot_wireframe(x, y, z, color="g")
# draw a point0
ax.scatter(groundLocation[0],groundLocation[1],groundLocation[2], color="r", s=100)
# draw a vector
for location in scLocations:
ax.scatter(location[0],location[1],location[2],color='k',s=100)
ax.quiver(groundLocation[0],groundLocation[1],groundLocation[2],
location[0],location[1],location[2], length=1.0, normalize=True)
#ax.add_artist(a)
plt.show()
if __name__ == '__main__':
test_rotation(False)
# test_range(True)