#
# ISC License
#
# Copyright (c) 2022, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: torqueScheduler
# Author: Riccardo Calaon
# Creation Date: January 25, 2023
#
import pytest
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging # import the message definitions
from Basilisk.fswAlgorithms import torqueScheduler # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test. Note that the order in that you add the parametrize method
# matters for the documentation in that it impacts the order in which the test arguments are shown.
# The first parametrize arguments are shown last in the pytest argument list
[docs]
@pytest.mark.parametrize("lockFlag", [0, 1, 2, 3])
@pytest.mark.parametrize("tSwitch", [3, 6])
@pytest.mark.parametrize("accuracy", [1e-12])
def test_torqueScheduler(lockFlag, tSwitch, accuracy):
r"""
**Validation Test Description**
This unit test verifies the correctness of the output motor torque :ref:`torqueScheduler`.
The inputs provided are the lock flag and the time at which thr control is switched from
one degree of freedom to the other.
**Test Parameters**
Args:
lockFlag (int): flag to determine which torque to use first;
tSwitch (double): time at which torque is to be switched from one d.o.f. to the other;
**Description of Variables Being Tested**
This unit test checks the correctness of the output motor torque msg and the output effector lock msg:
- ``motorTorqueOutMsg``
- ``effectorLockOutMsg``.
The test checks that the output of ``motorTorqueOutMsg`` always matches the torques contained in the input msgs
and that the flags contained in ``effectorLockOutMsg`` are consistent with the schedule logic that the user is requesting.
"""
# each test method requires a single assert method to be called
[testResults, testMessage] = torqueSchedulerTestFunction(lockFlag, tSwitch, accuracy)
assert testResults < 1, testMessage
def torqueSchedulerTestFunction(lockFlag, tSwitch, accuracy):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(1) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C container
scheduler = torqueScheduler.torqueScheduler()
scheduler.ModelTag = "torqueScheduler"
scheduler.lockFlag = lockFlag
scheduler.tSwitch = tSwitch
unitTestSim.AddModelToTask(unitTaskName, scheduler)
# Create input array motor torque msg #1
motorTorque1InMsgData = messaging.ArrayMotorTorqueMsgPayload()
motorTorque1InMsgData.motorTorque = [1]
motorTorque1InMsg = messaging.ArrayMotorTorqueMsg().write(motorTorque1InMsgData)
scheduler.motorTorque1InMsg.subscribeTo(motorTorque1InMsg)
# Create input array motor torque msg #2
motorTorque2InMsgData = messaging.ArrayMotorTorqueMsgPayload()
motorTorque2InMsgData.motorTorque = [3]
motorTorque2InMsg = messaging.ArrayMotorTorqueMsg().write(motorTorque2InMsgData)
scheduler.motorTorque2InMsg.subscribeTo(motorTorque2InMsg)
# Setup logging on the test module output messages so that we get all the writes to it
torqueLog = scheduler.motorTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, torqueLog)
lockLog = scheduler.effectorLockOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, lockLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(10)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# compare the module results to the truth values
time = torqueLog.times() * macros.NANO2SEC
for i in range(len(time)):
if not unitTestSupport.isDoubleEqual(torqueLog.motorTorque[i][0], motorTorque1InMsgData.motorTorque[0], accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at passing motor torque #1 value")
if not unitTestSupport.isDoubleEqual(torqueLog.motorTorque[i][1], motorTorque2InMsgData.motorTorque[0], accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at passing motor torque #2 value")
if lockFlag == 0:
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 0, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1")
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 0, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2")
elif lockFlag == 1:
if time[i] > tSwitch:
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1")
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 0, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2")
else:
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 0, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1")
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2")
elif lockFlag == 2:
if time[i] > tSwitch:
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 0, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1")
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2")
else:
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1")
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 0, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2")
else:
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1")
if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2")
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_torqueScheduler(
1,
5,
1e-12
)