Source code for test_torqueScheduler

#
#  ISC License
#
#  Copyright (c) 2022, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#


#
#   Unit Test Script
#   Module Name:        torqueScheduler
#   Author:             Riccardo Calaon
#   Creation Date:      January 25, 2023
#

import pytest
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging  # import the message definitions
from Basilisk.fswAlgorithms import torqueScheduler  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.  Note that the order in that you add the parametrize method
# matters for the documentation in that it impacts the order in which the test arguments are shown.
# The first parametrize arguments are shown last in the pytest argument list
[docs] @pytest.mark.parametrize("lockFlag", [0, 1, 2, 3]) @pytest.mark.parametrize("tSwitch", [3, 6]) @pytest.mark.parametrize("accuracy", [1e-12]) def test_torqueScheduler(lockFlag, tSwitch, accuracy): r""" **Validation Test Description** This unit test verifies the correctness of the output motor torque :ref:`torqueScheduler`. The inputs provided are the lock flag and the time at which thr control is switched from one degree of freedom to the other. **Test Parameters** Args: lockFlag (int): flag to determine which torque to use first; tSwitch (double): time at which torque is to be switched from one d.o.f. to the other; **Description of Variables Being Tested** This unit test checks the correctness of the output motor torque msg and the output effector lock msg: - ``motorTorqueOutMsg`` - ``effectorLockOutMsg``. The test checks that the output of ``motorTorqueOutMsg`` always matches the torques contained in the input msgs and that the flags contained in ``effectorLockOutMsg`` are consistent with the schedule logic that the user is requesting. """ # each test method requires a single assert method to be called [testResults, testMessage] = torqueSchedulerTestFunction(lockFlag, tSwitch, accuracy) assert testResults < 1, testMessage
def torqueSchedulerTestFunction(lockFlag, tSwitch, accuracy): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(1) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C container scheduler = torqueScheduler.torqueScheduler() scheduler.ModelTag = "torqueScheduler" scheduler.lockFlag = lockFlag scheduler.tSwitch = tSwitch unitTestSim.AddModelToTask(unitTaskName, scheduler) # Create input array motor torque msg #1 motorTorque1InMsgData = messaging.ArrayMotorTorqueMsgPayload() motorTorque1InMsgData.motorTorque = [1] motorTorque1InMsg = messaging.ArrayMotorTorqueMsg().write(motorTorque1InMsgData) scheduler.motorTorque1InMsg.subscribeTo(motorTorque1InMsg) # Create input array motor torque msg #2 motorTorque2InMsgData = messaging.ArrayMotorTorqueMsgPayload() motorTorque2InMsgData.motorTorque = [3] motorTorque2InMsg = messaging.ArrayMotorTorqueMsg().write(motorTorque2InMsgData) scheduler.motorTorque2InMsg.subscribeTo(motorTorque2InMsg) # Setup logging on the test module output messages so that we get all the writes to it torqueLog = scheduler.motorTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, torqueLog) lockLog = scheduler.effectorLockOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, lockLog) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(10)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # compare the module results to the truth values time = torqueLog.times() * macros.NANO2SEC for i in range(len(time)): if not unitTestSupport.isDoubleEqual(torqueLog.motorTorque[i][0], motorTorque1InMsgData.motorTorque[0], accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at passing motor torque #1 value") if not unitTestSupport.isDoubleEqual(torqueLog.motorTorque[i][1], motorTorque2InMsgData.motorTorque[0], accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at passing motor torque #2 value") if lockFlag == 0: if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 0, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1") if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 0, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2") elif lockFlag == 1: if time[i] > tSwitch: if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1") if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 0, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2") else: if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 0, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1") if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2") elif lockFlag == 2: if time[i] > tSwitch: if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 0, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1") if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2") else: if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1") if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 0, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2") else: if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][0], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #1") if not unitTestSupport.isDoubleEqual(lockLog.effectorLockFlag[i][1], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: " + scheduler.ModelTag + " module failed at outputting effector flag #2") # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_torqueScheduler( 1, 5, 1e-12 )