#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: torque2Dipole
# Author: Henry Macanas
# Creation Date: 06 18, 2021
#
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging # import the message definitions
from Basilisk.fswAlgorithms import torque2Dipole # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
accuracy = 1E-12
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
def test_torque2Dipole_module(): # update "module" in this function name to reflect the module name
r"""
**Validation Test Description**
This script tests that the 3x1 Body frame dipole vector,
dipole_B, is computed correctly and that the algorithm doesn't fail when
the inputs are given zero values.
**Description of Variables Being Tested**
In this file we are checking the values of the variable:
- ``dipole_B[3]``
"""
# each test method requires a single assert method to be called
# pass on the testPlotFixture so that the main test function may set the DataStore attributes
[testResults, testMessage] = torque2DipoleModuleTestFunction()
assert testResults < 1, testMessage
def torque2DipoleModuleTestFunction():
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Initialize module under test's config message and add module to runtime call list
module = torque2Dipole.torque2Dipole()
module.ModelTag = "mtbMomentumManagement" # update python name of test module
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize TAMSensorBodyMsg
tamSensorBodyInMsgContainer = messaging.TAMSensorBodyMsgPayload()
tamSensorBodyInMsgContainer.tam_B = [1E-5, 0.0, 0.0]
tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer)
# Initialize CmdTorqueBodyMsg
tauRequestInMsgContainer = messaging.CmdTorqueBodyMsgPayload()
tauRequestInMsgContainer.torqueRequestBody = [10.* 1E-3, 20. * 1E-3, 30 * 1E-3]
tauRequestInMsg = messaging.CmdTorqueBodyMsg().write(tauRequestInMsgContainer)
# Setup logging on the test module output message so that we get all the writes to it
resultDipoleRequestOutMsg = module.dipoleRequestOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, resultDipoleRequestOutMsg)
# connect the message interfaces
module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg)
module.tauRequestInMsg.subscribeTo(tauRequestInMsg)
# Set the simulation time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.0)) # seconds to stop simulation
unitTestSim.InitializeSimulation()
'''
TEST 1:
Check that dipole_B is non-zero expected value.
'''
unitTestSim.ExecuteSimulation()
b = np.array(tamSensorBodyInMsgContainer.tam_B)
tau = np.array(tauRequestInMsgContainer.torqueRequestBody)
expectedDipole = 1 / np.dot(b, b) * np.cross(b, tau)
testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole,
resultDipoleRequestOutMsg.dipole_B[0],
accuracy,
"dipole_B",
testFailCount, testMessages)
'''
TEST 2:
Check that dipole_B is zero when tam_B is zero.
'''
tamSensorBodyInMsgContainer.tam_B = [0., 0., 0.]
tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer)
module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg)
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
expectedDipole = [0., 0., 0.]
testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole,
resultDipoleRequestOutMsg.dipole_B[0],
accuracy,
"dipole_B",
testFailCount, testMessages)
'''
TEST 3:
Check that dipole_B is zero when torqueRequestBody is zero.
'''
tamSensorBodyInMsgContainer.tam_B = [1E-5, 0.0, 0.0]
tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer)
module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg)
tauRequestInMsgContainer.torqueRequestBody = [0., 0., 0.]
tauRequestInMsg = messaging.CmdTorqueBodyMsg().write(tauRequestInMsgContainer)
module.tauRequestInMsg.subscribeTo(tauRequestInMsg)
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
expectedDipole = [0., 0., 0.]
testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole,
resultDipoleRequestOutMsg.dipole_B[0],
accuracy,
"dipole_B",
testFailCount, testMessages)
print("Accuracy used: " + str(accuracy))
if testFailCount == 0:
print("PASSED: torque2Dipole unit test")
else:
print("Failed: torque2Dipole unit test")
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_torque2Dipole_module()