#
# ISC License
#
# Copyright (c) 2023, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import pytest
import os, inspect, random
import numpy as np
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all the modules that are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.fswAlgorithms import thrusterPlatformReference
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.architecture import messaging
from Basilisk.architecture import bskLogging
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test. Note that the order in that you add the parametrize method
# matters for the documentation in that it impacts the order in which the test arguments are shown.
# The first parametrize arguments are shown last in the pytest argument list
def platformRotationTestFunction(show_plots, delta_CM, K, thetaMax, seed, accuracy):
random.seed(seed)
sigma_MB = np.array([0., 0., 0.])
r_BM_M = np.array([0.0, 0.1, 1.4])
r_FM_F = np.array([0.0, 0.0, -0.1])
r_TF_F = np.array([-0.01, 0.03, 0.02])
T_F = np.array([1.0, 1.0, 10.0])
r_CB_B = np.array([0,0,0]) + np.random.rand(3)
r_CB_B = r_CB_B / np.linalg.norm(r_CB_B) * delta_CM
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(1) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
platform = thrusterPlatformReference.thrusterPlatformReference()
platform.ModelTag = "platformReference"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, platform)
# Initialize the test module configuration data
platform.sigma_MB = sigma_MB
platform.r_BM_M = r_BM_M
platform.r_FM_F = r_FM_F
platform.K = K
platform.Ki = 0
platform.theta1Max = thetaMax
platform.theta2Max = thetaMax
# Create input vehicle configuration msg
inputVehConfigMsgData = messaging.VehicleConfigMsgPayload()
inputVehConfigMsgData.CoM_B = r_CB_B
inputVehConfigMsg = messaging.VehicleConfigMsg().write(inputVehConfigMsgData)
platform.vehConfigInMsg.subscribeTo(inputVehConfigMsg)
# Create input THR Config Msg
THRConfig = messaging.THRConfigMsgPayload()
THRConfig.rThrust_B = r_TF_F
THRConfig.maxThrust = np.linalg.norm(T_F)
THRConfig.tHatThrust_B = T_F / THRConfig.maxThrust
thrConfigFMsg = messaging.THRConfigMsg().write(THRConfig)
platform.thrusterConfigFInMsg.subscribeTo(thrConfigFMsg)
# Create input RW configuration msg
inputRWConfigMsgData = messaging.RWArrayConfigMsgPayload()
inputRWConfigMsgData.GsMatrix_B = [1,0,0,0,1,0,0,0,1]
inputRWConfigMsgData.JsList = [0.01, 0.01, 0.01]
inputRWConfigMsgData.numRW = 3
inputRWConfigMsgData.uMax = [0.001, 0.001, 0.001]
inputRWConfigMsg = messaging.RWArrayConfigMsg().write(inputRWConfigMsgData)
platform.rwConfigDataInMsg.subscribeTo(inputRWConfigMsg)
# Create input RW speeds msg
inputRWSpeedsMsgData = messaging.RWSpeedMsgPayload()
inputRWSpeedsMsgData.wheelSpeeds = [100, 100, 100]
inputRWSpeedsMsg = messaging.RWSpeedMsg().write(inputRWSpeedsMsgData)
platform.rwSpeedsInMsg.subscribeTo(inputRWSpeedsMsg)
# Setup logging on the test module output messages so that we get all the writes to it
ref1Log = platform.hingedRigidBodyRef1OutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, ref1Log)
ref2Log = platform.hingedRigidBodyRef2OutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, ref2Log)
bodyHeadingLog = platform.bodyHeadingOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, bodyHeadingLog)
thrusterTorqueLog = platform.thrusterTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, thrusterTorqueLog)
thrConfigBLog = platform.thrusterConfigBOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, thrConfigBLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
theta1 = ref1Log.theta[0]
theta2 = ref2Log.theta[0]
FM = rbk.euler1232C([theta1, theta2, 0.0])
MB = rbk.MRP2C(sigma_MB)
r_CB_M = np.matmul(MB, r_CB_B)
r_CM_M = r_CB_M + r_BM_M
r_CM_F = np.matmul(FM, r_CM_M)
r_CT_F = r_CM_F - r_FM_F - r_TF_F
offset = np.linalg.norm(np.cross(r_CT_F,T_F) / np.linalg.norm(np.array(r_CT_F)) / np.linalg.norm(np.array(T_F)))
# check if the CM offset is zero if control gain K is also 0
if K == 0 and thetaMax < 0:
np.testing.assert_allclose(offset, 0.0, rtol=0, atol=accuracy, verbose=True)
T_B_hat_sim = bodyHeadingLog.rHat_XB_B[0] # simulation result
FB = np.matmul(FM, MB)
T_B = np.matmul(FB.transpose(), T_F)
T_B_hat = T_B / np.linalg.norm(T_B) # truth value
# compare the module results to the python computation for body-frame thruster direction
np.testing.assert_allclose(T_B_hat_sim, T_B_hat, rtol=0, atol=accuracy, verbose=True)
L_B_sim = thrusterTorqueLog.torqueRequestBody[0] # simulation result
L_F = np.cross(r_CT_F, T_F)
L_B = np.matmul(FB.transpose(),L_F)
# compare the module results to the python computation for body-frame cmd torque
np.testing.assert_allclose(L_B_sim, L_B, rtol=0, atol=accuracy, verbose=True)
# compare the module results to the python computation for thruster configuration in B frame
r_TB_B = r_CB_B - np.matmul(FB.transpose(), r_CT_F)
r_TB_B_sim = thrConfigBLog.rThrust_B[0]
tHat_B_sim = thrConfigBLog.tHatThrust_B[0]
tMax_sim = thrConfigBLog.maxThrust[0]
np.testing.assert_allclose(r_TB_B_sim, r_TB_B, rtol=0, atol=accuracy, verbose=True)
np.testing.assert_allclose(tHat_B_sim, T_B_hat, rtol=0, atol=accuracy, verbose=True)
np.testing.assert_allclose(tMax_sim, np.linalg.norm(T_B), rtol=0, atol=accuracy, verbose=True)
# compare the output reference angle
if thetaMax > 0:
np.testing.assert_array_less(theta1, thetaMax + accuracy, verbose=True)
np.testing.assert_array_less(theta2, thetaMax + accuracy, verbose=True)
return
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_platformRotation(
False, # show_plots
0.1, # delta_CM
0, # K
-1, # thetaMax
np.random.rand(1)[0], # seed
1e-10 # accuracy
)