Source code for test_thrustRWDesat

#
#   Unit Test Script
#   Module Name:        thrustRWDesat
#   Creation Date:      October 5, 2018
#

from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import thrustRWDesat
from Basilisk.utilities import SimulationBaseClass, unitTestSupport, macros, fswSetupThrusters


[docs] def test_thrustRWDesat(): """ Test thrustRWDesat. """ [testResults, testMessage] = thrustRWDesatTestFunction() assert testResults < 1, testMessage
[docs] def thrustRWDesatTestFunction(): """ Test the thrustRWDesat module. Setup a simulation, """ testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # This is needed if multiple unit test scripts are run # This create a fresh and consistent simulation environment for each test run # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Add a new task to the process # Construct the thrustRWDesat module # Set the names for the input messages module = thrustRWDesat.thrustRWDesat() # Set the necessary data in the module. NOTE: This information is more or less random module.thrFiringPeriod = .5 # The amount of time to rest between thruster firings [s] module.DMThresh = 20 # The point at which to stop decrementing momentum [r/s] module.currDMDir = [1, 0, 0] # The current direction of momentum reduction module.maxFiring = 5 # Maximum time to fire a jet for [s] # This calls the algContain to setup the selfInit, update, and reset module.ModelTag = "thrustRWDesat" # Add the module to the task unitTestSim.AddModelToTask(unitTaskName, module) numRW = 3 inputRWConstellationMsg = messaging.RWConstellationMsgPayload() inputRWConstellationMsg.numRW = numRW # Initialize the msg that gives the speed of the reaction wheels inputSpeedMsg = messaging.RWSpeedMsgPayload() gsHat = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # Iterate over all of the reaction wheels, create a rwConfigElementFswMsg, and add them to the rwConstellationFswMsg rwConfigElementList = list() for rw in range(numRW): rwConfigElementMsg = messaging.RWConfigElementMsgPayload() rwConfigElementMsg.gsHat_B = gsHat[rw] # Spin axis unit vector of the wheel in structure # [1, 0, 0] rwConfigElementMsg.Js = 0.08 # Spin axis inertia of wheel [kgm2] rwConfigElementMsg.uMax = 0.2 # maximum RW motor torque [Nm] # Add this to the list rwConfigElementList.append(rwConfigElementMsg) inputSpeedMsg.wheelSpeeds = [20, 10, 30] # The current angular velocities of the RW wheel # Set the array of the reaction wheels in RWConstellationFswMsg to the list created above inputRWConstellationMsg.reactionWheels = rwConfigElementList # Initialize the msg that gives the mass properties. This just needs the center of mass value inputVehicleMsg = messaging.VehicleConfigMsgPayload() inputVehicleMsg.CoM_B = [0, 0, 0] # This is random. # setup thruster cluster message fswSetupThrusters.clearSetup() rcsLocationData = [ [-0.86360, -0.82550, 1.79070], [-0.82550, -0.86360, 1.79070], [0.82550, 0.86360, 1.79070], [0.86360, 0.82550, 1.79070], [-0.86360, -0.82550, -1.79070], [-0.82550, -0.86360, -1.79070], [0.82550, 0.86360, -1.79070], [0.86360, 0.82550, -1.79070] ] rcsDirectionData = [ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0] ] for i in range(len(rcsLocationData)): fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], 2.0) thrConfigInMsg = fswSetupThrusters.writeConfigMessage() numThrusters = fswSetupThrusters.getNumOfDevices() # Set these messages rwSpeedInMsg = messaging.RWSpeedMsg().write(inputSpeedMsg) rwConstInMsg = messaging.RWConstellationMsg().write(inputRWConstellationMsg) vcConfigInMsg = messaging.VehicleConfigMsg().write(inputVehicleMsg) dataLog = module.thrCmdOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) module.rwSpeedInMsg.subscribeTo(rwSpeedInMsg) module.rwConfigInMsg.subscribeTo(rwConstInMsg) module.vecConfigInMsg.subscribeTo(vcConfigInMsg) module.thrConfigInMsg.subscribeTo(thrConfigInMsg) # Initialize the simulation unitTestSim.InitializeSimulation() # Step the simulation to 9*process rate so 10 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # This doesn't work if only 1 number is passed in as the second argument, but we don't need the second outputThrData = dataLog.OnTimeRequest[:, :numThrusters] # print(outputThrData) # This is just what is outputted... trueVector = [[0., 0., 0., 0., 0., 0., 0., 0.], [0.00000000e+00, 1.97181559e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0, 0.0, 0.0], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0, 1.28062495e+00, 0.0, 0.0], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0, 1.28062495e+00, 0.0, 0.0], [ 0.00000000e+00, 1.97181559e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0, 0.0, 0.0]] accuracy = 1e-6 # At each timestep, make sure the vehicleConfig values haven't changed from the initial values testFailCount, testMessages = unitTestSupport.compareArrayND(trueVector, outputThrData, accuracy, "ThrustRWDesat output", numThrusters, testFailCount, testMessages) if testFailCount == 0: print("Passed") return [testFailCount, ''.join(testMessages)]
if __name__ == '__main__': test_thrustRWDesat()