# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: thrForceMapping
# Author: Hanspeter Schaub
# Creation Date: July 4, 2016
#
import inspect
import os
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
import pytest
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import thrForceMapping
from Basilisk.utilities import macros
from Basilisk.utilities import fswSetupThrusters
from Basilisk.architecture import messaging
import numpy as np
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("useDVThruster", [True, False])
@pytest.mark.parametrize(["useCOMOffset","dropThruster", "use2ndLoop"],[
(False, 0, False),
(False, 1, True),
(False, 2, True), # Any time we drop a thruster we should recompute the solution
(True, 0, False)]) # We don't handle the case where there is a dropped thruster and and COM offset--see performance analysis.
@pytest.mark.parametrize("asymmetricDrop", [False])
@pytest.mark.parametrize("numControlAxis", [1, 2, 3])
@pytest.mark.parametrize("saturateThrusters", [0,1,2])
@pytest.mark.parametrize("misconfigThruster", [False])
# update "module" in this function name to reflect the module name
def test_module(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster, use2ndLoop):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop,
numControlAxis, saturateThrusters, misconfigThruster, use2ndLoop)
assert testResults < 1, testMessage
def thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis,
saturateThrusters, misconfigThruster,use2ndLoop):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = thrForceMapping.thrForceMapping()
module.ModelTag = "thrForceMapping"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
module.use2ndLoop = use2ndLoop
# write vehicle configuration message
vehicleConfigOut = messaging.VehicleConfigMsgPayload()
if useCOMOffset == 1:
CoM_B = [0.03,0.001,0.02]
else:
CoM_B = [0,0,0]
vehicleConfigOut.CoM_B = CoM_B
vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut)
# Create input message and size it because the regular creator of that message
# is not part of the test.
inputMessageData = messaging.CmdTorqueBodyMsgPayload() # Create a structure for the input message
requestedTorque = [1.0, -0.5, 0.7] # Set up a list as a 3-vector
if saturateThrusters>0: # default angErrThresh is 0, thus this should trigger scaling
requestedTorque = [10.0, -5.0, 7.0]
if saturateThrusters==2: # angle is set and small enough to trigger scaling
module.angErrThresh = 10.0*macros.D2R
if saturateThrusters==3: # angle is too large enough to trigger scaling
module.angErrThresh = 40.0*macros.D2R
inputMessageData.torqueRequestBody = requestedTorque # write torque request to input message
cmdTorqueInMsg = messaging.CmdTorqueBodyMsg().write(inputMessageData)
module.epsilon = 0.0005
fswSetupThrusters.clearSetup()
MAX_EFF_CNT = messaging.MAX_EFF_CNT
rcsLocationData = np.zeros((MAX_EFF_CNT, 3))
rcsDirectionData = np.zeros((MAX_EFF_CNT, 3))
controlAxes_B = np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
])
controlAxes_B = controlAxes_B[0:numControlAxis]
if len(controlAxes_B) == 0:
controlAxes_B = np.array([[]])
controlAxes_B = np.reshape(controlAxes_B, (1, 3 * numControlAxis))
module.controlAxes_B = controlAxes_B[0].tolist()
if useDVThruster:
# DV thruster setup
module.thrForceSign = -1
numThrusters = 6
rcsLocationData[0:6] = [ \
[0, 0.413, -0.1671],
[0, -0.413, -0.1671],
[0.35766849176297305, 0.20650000000000013, -0.1671],
[0.3576684917629732, -0.20649999999999988, -0.1671],
[-0.35766849176297333, 0.20649999999999968, -0.1671],
[-0.35766849176297305, -0.20650000000000018, -0.1671] \
]
rcsDirectionData[0:6] = [ \
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0] \
]
else:
# RCS thruster setup
module.thrForceSign = +1
numThrusters = 8
rcsLocationData[0:8] = [ \
[-0.86360, -0.82550, 1.79070],
[-0.82550, -0.86360, 1.79070],
[0.82550, 0.86360, 1.79070],
[0.86360, 0.82550, 1.79070],
[-0.86360, -0.82550, -1.79070],
[-0.82550, -0.86360, -1.79070],
[0.82550, 0.86360, -1.79070],
[0.86360, 0.82550, -1.79070] \
]
rcsDirectionData[0:8] = [ \
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, -1.0, 0.0],
[-1.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, -1.0, 0.0],
[-1.0, 0.0, 0.0] \
]
if dropThruster > 0:
if (dropThruster % 2==0) and asymmetricDrop: # Drop thrusters that don't share the same torque direction
removedThrusters = 0
for i in range(0, numThrusters, 2):
rcsLocationData[i] = [0.0, 0.0, 0.0]
rcsDirectionData[i] = [0.0, 0.0, 0.0]
removedThrusters += 1
if removedThrusters < dropThruster:
rcsLocationData[1] = [0.0, 0.0, 0.0]
removedThrusters += 1
else:
for i in range(dropThruster):
rcsLocationData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0]
rcsDirectionData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0]
indices = []
for i in range(numThrusters):
if np.linalg.norm(rcsLocationData[i]) == 0:
indices = np.append(indices, i)
offset = 0
for i in indices:
idx = (int) (i - offset)
rcsLocationData = np.delete(rcsLocationData, idx, axis=0)
rcsDirectionData = np.delete(rcsDirectionData, idx, axis=0)
rcsLocationData = np.append(rcsLocationData,[[0.0, 0.0, 0.0]], axis=0)
rcsDirectionData = np.append(rcsDirectionData, [[0.0, 0.0, 0.0]], axis=0)
offset = offset + 1
numThrusters = numThrusters - dropThruster
maxThrust = 0.95
if useDVThruster:
maxThrust = 10.0
for i in range(numThrusters):
if misconfigThruster and i == 0:
maxThrustConfig = 0.0
else:
maxThrustConfig = maxThrust
fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], maxThrustConfig)
thrConfigInMsg = fswSetupThrusters.writeConfigMessage()
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.thrForceCmdOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.cmdTorqueInMsg.subscribeTo(cmdTorqueInMsg)
module.thrConfigInMsg.subscribeTo(thrConfigInMsg)
module.vehConfigInMsg.subscribeTo(vcInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
moduleOutput = dataLog.thrForce
if misconfigThruster:
return [testFailCount, ''.join(testMessages)] # We don't handle cases where a thruster is configured incorrectly.
if useDVThruster and numControlAxis == 3:
return [testFailCount, ''.join(testMessages)] # 3 control axes doesn't work for dv thrusters (only two axes controllable)
results = thrForceMapping.Results_thrForceMapping(requestedTorque, module.controlAxes_B,
vehicleConfigOut.CoM_B, rcsLocationData,
rcsDirectionData, module.thrForceSign,
module.thrForcMag, module.angErrThresh,
numThrusters, module.epsilon, use2ndLoop)
F, DNew = results.results_thrForceMapping()
trueVector = np.zeros((2, MAX_EFF_CNT))
trueVector[0,:] = F
trueVector[1,:] = F
C = np.reshape(controlAxes_B, (numControlAxis, 3))
CT = np.transpose(C)
D = np.cross(rcsDirectionData,rcsLocationData-CoM_B)
receivedTorque = -1.0*np.array([np.matmul(np.transpose(D), np.transpose(moduleOutput[0]))])
receivedTorque = np.append(np.array([]), receivedTorque)
Lr_offset = np.array([0.0, 0.0, 0.0])
Lr_B = np.array([0.0, 0.0, 0.0])
for i in range(0,numThrusters):
if module.thrForceSign < 0 and module.thrForcMag[i] >= 0:
Lr_offset -= module.thrForcMag[i]*np.cross(rcsLocationData[i,:]-CoM_B,rcsDirectionData[i,:]) # off pulsing
Lr_B = requestedTorque + Lr_offset
# This computes the requested torque direction and the received torque directions
Lr_Req_B_Unit = Lr_B / np.linalg.norm(Lr_B)
Lr_Rec_B_Unit = receivedTorque / np.linalg.norm(receivedTorque)
# This is the requested and recieved torque projected onto the control axes
Lr_Req_Bar_B = np.matmul(CT, np.matmul(C, Lr_B))
Lr_Rec_Bar_B = np.matmul(CT, np.matmul(C, receivedTorque))
# This computes the projected requested and received control torque directions
Lr_Req_Bar_B_Unit = Lr_Req_Bar_B/np.linalg.norm(Lr_Req_Bar_B)
Lr_Rec_Bar_B_Unit = Lr_Rec_Bar_B/np.linalg.norm(Lr_Rec_Bar_B)
if np.linalg.norm(Lr_Rec_Bar_B) == 0.0:
Lr_Rec_Bar_B_Unit = [0.0, 0.0, 0.0]
accuracy = 1E-6
# Check that Python Math and C Math are Identical
testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([F]), np.array([moduleOutput[0]]), accuracy,
"CompareForces",
MAX_EFF_CNT, testFailCount, testMessages)
# Checks to make sure that no forces are negative
if not useDVThruster and np.any(moduleOutput[0] < 0):
testFailCount += 1
print("A negative force exists in the C RCS solution. This is not allowed!\n")
if not useDVThruster and np.any(F < 0):
testFailCount += 1
print("A negative force exists in the Python RCS solution. This is not allowed!\n")
if testFailCount > 0:
return [testFailCount, ''.join(testMessages)]
# Check that Torques are Sensible
print("\nReq Lr_Bar [B]: " + str(Lr_Req_Bar_B))
print("Rec Lr_Bar [B]: " + str(Lr_Rec_Bar_B))
testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([Lr_Req_Bar_B_Unit]),
np.array([Lr_Rec_Bar_B_Unit]), accuracy,
"CompareTorques",
3, testFailCount, testMessages)
snippetName = "LrData_" + str(useDVThruster) + "_" + str(dropThruster) + "_" + str(numControlAxis) + "_" + str(useCOMOffset) + "____" + str(asymmetricDrop) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster)
snippetTex = "DV Thrusters:\t" + str(useDVThruster) + "\n"
snippetTex += "Number of Dropped Thrusters:\t" + str(dropThruster)+ "\n"
snippetTex += "Number of Control Axes:\t" + str(numControlAxis) + "\n"
snippetTex += "COM Offset:\t" + str(useCOMOffset) + "\n\n"
snippetTex += "Was the drop asymmetric about the COM?\t" + str(asymmetricDrop) + "\n"
snippetTex += "Number of Saturated Thrusters:\t" + str(saturateThrusters) + "\n"
snippetTex += "Misconfigured Thruster?:\t" + str(misconfigThruster) + "\n\n"
snippetTex += "Original [B]:\t" + str(requestedTorque) + "\n"
snippetTex += "Requested (Original + Offset) [B]:\t" + str(Lr_B) + "\n"
snippetTex += "Received [B]:\t\t" + str(receivedTorque) + "\n\n"
snippetTex += "Requested Unit:\t\t" + str(Lr_Req_B_Unit) + "\n"
snippetTex += "Received Unit:\t\t" + str(Lr_Rec_B_Unit) + "\n\n"
snippetTex += "Requested On Control Axes (Original + Offset) [B]:\t" + str(Lr_Req_Bar_B) + "\n"
snippetTex += "Received On Control Axes [B]:\t\t" + str(Lr_Rec_Bar_B) + "\n\n"
snippetTex += "Requested On Control Axes Unit:\t\t" + str(Lr_Req_Bar_B_Unit) + "\n"
snippetTex += "Received On Control Axes Unit:\t\t" + str(Lr_Rec_Bar_B_Unit) + "\n\n"
snippetTex += "D-Matrix:\n" + str(D) + "\n\n"
snippetTex += "Forces:\n" + str(np.transpose(F)) + "\n\n"
directory = "Nom/UnitVec/"
# Any solutions that dont have the correct torque, but do have the correct unit direction are called successful.
if testFailCount > 0:
unitTestSupport.writeTeXSnippet(directory+"Failed/"+snippetName, snippetTex, path)
print("FAILED: " + module.ModelTag)
testMessages.append("FAILED: " + module.ModelTag + " Module failed unit test at t=" +
str(dataLog.times()[0] * macros.NANO2SEC) +
"sec\n")
else:
unitTestSupport.writeTeXSnippet(directory+"/Passed/" + snippetName, snippetTex, path)
print("PASSED: " + module.ModelTag)
unitTestSupport.writeTeXSnippet('toleranceValue', str(accuracy), path)
snippentName = "passFail_" + str(useDVThruster) + "_" + str(useCOMOffset) + "_" + str(dropThruster) + "_" + str(
numControlAxis) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
if testFailCount > 0:
print("Python:\t " + str(F))
print("C: \t:" + str(moduleOutput[0]))
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_module( # update "module" in function name
False,
False, # useDVThruster
False, # use COM offset
2, # num drop thruster(s)
False, # asymmetric drop
3, # num control axis
2, # saturateThrusters
False, # misconfigThruster
False # Use 2nd loop
)