# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: sunSafePoint
# Author: Hanspeter Schaub
# Creation Date: April 25, 2018
#
import inspect
import os
import numpy as np
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import sunSafePoint # import the module that is to be tested
from Basilisk.architecture import messaging
from Basilisk.utilities import macros as mc
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("case", [
(1) # sun is visible, vectors are not aligned
,(2) # sun is not visible, vectors are not aligned
,(3) # sun is visible, vectors are aligned
,(4) # sun is visible, vectors are oppositely aligned
,(5) # sun is visible, vectors are oppositely aligned, and command sc is b1
,(6) # sun is not visible, vectors are not aligned, no specified omega_RN_B value
,(7) # sun is visible, vectors not aligned, nominal spin rate specified about sun heading vector
])
def test_module(show_plots, case):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = sunSafePointTestFunction(show_plots, case)
assert testResults < 1, testMessage
def sunSafePointTestFunction(show_plots, case):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = mc.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = sunSafePoint.sunSafePoint()
module.ModelTag = "sunSafePoint"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
sHat_Cmd_B = np.array([0.0, 0.0 ,1.0])
if case == 5:
sHat_Cmd_B = np.array([1.0, 0.0, 0.0])
module.sHatBdyCmd = sHat_Cmd_B
module.minUnitMag = 0.1
if case == 2:
omega_RN_B_Search = np.array([0.0, 0.0, 0.1])
module.omega_RN_B = omega_RN_B_Search
module.smallAngle = 0.01*mc.D2R
# Create input messages
#
inputSunVecData = messaging.NavAttMsgPayload() # Create a structure for the input message
sunVec_B = np.array([1.0, 1.0, 0.0])
if (case == 2 or case == 6): # no sun visible, providing a near zero norm direction vector */
sunVec_B = [0.0, module.minUnitMag/2, 0.0]
if (case == 3):
sunVec_B = sHat_Cmd_B
if (case == 4 or case == 5):
sunVec_B = -sHat_Cmd_B
inputSunVecData.vehSunPntBdy = sunVec_B
sunInMsg = messaging.NavAttMsg().write(inputSunVecData)
inputIMUData = messaging.NavAttMsgPayload() # Create a structure for the input message
omega_BN_B = np.array([0.01, 0.50, -0.2])
inputIMUData.omega_BN_B = omega_BN_B
imuInMsg = messaging.NavAttMsg().write(inputIMUData)
if case == 7:
module.sunAxisSpinRate = 1.5*mc.D2R
omega_RN_B_Search = sunVec_B/np.linalg.norm(sunVec_B) * module.sunAxisSpinRate
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attGuidanceOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.sunDirectionInMsg.subscribeTo(sunInMsg)
module.imuInMsg.subscribeTo(imuInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(1.)) # seconds to stop simulation
# run the Reset() routine
module.Reset(0) # this module reset function needs a time input (in NanoSeconds)
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
#
# check sigma_BR
#
# set the filtered output truth states
if (case == 1 or case == 7):
eHat = np.cross(sunVec_B,sHat_Cmd_B)
eHat = eHat / np.linalg.norm(eHat)
Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B),sHat_Cmd_B))
sigmaTrue = eHat * np.tan(Phi/4.0)
trueVector = [
sigmaTrue.tolist(),
sigmaTrue.tolist(),
sigmaTrue.tolist()
]
if (case == 2 or case == 3 or case == 6):
trueVector = [
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]
]
if (case == 4):
eHat = np.cross(sHat_Cmd_B,np.array([1,0,0]))
eHat = eHat / np.linalg.norm(eHat)
Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B),sHat_Cmd_B))
sigmaTrue = eHat * np.tan(Phi/4.0)
trueVector = [
sigmaTrue.tolist(),
sigmaTrue.tolist(),
sigmaTrue.tolist()
]
if (case == 5):
eHat = np.cross(sHat_Cmd_B, np.array([0, 1, 0]))
eHat = eHat / np.linalg.norm(eHat)
Phi = np.arccos(np.dot(sunVec_B/np.linalg.norm(sunVec_B), sHat_Cmd_B))
sigmaTrue = eHat * np.tan(Phi / 4.0)
trueVector = [
sigmaTrue.tolist(),
sigmaTrue.tolist(),
sigmaTrue.tolist()
]
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.sigma_BR[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_BR unit test at t=" +
str(dataLog.times()[i] * mc.NANO2SEC) +
"sec\n")
#
# check omega_BR_B
#
# set the filtered output truth states
if (case == 1 or case == 3 or case == 4 or case == 5 or case == 6):
trueVector = [
omega_BN_B.tolist(),
omega_BN_B.tolist(),
omega_BN_B.tolist()
]
if (case == 2 or case == 7):
trueVector = [
(omega_BN_B - omega_RN_B_Search).tolist(),
(omega_BN_B - omega_RN_B_Search).tolist(),
(omega_BN_B - omega_RN_B_Search).tolist()
]
# compare the module results to the truth values
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.omega_BR_B[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_BR_B unit test at t=" +
str(dataLog.times()[i] * mc.NANO2SEC) +
"sec\n")
#
# check omega_RN_B
#
# set the filtered output truth states
if (case == 1 or case == 3 or case == 4 or case == 5 or case == 6):
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
if (case == 2 or case == 7):
trueVector = [
omega_RN_B_Search,
omega_RN_B_Search,
omega_RN_B_Search
]
# compare the module results to the truth values
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.omega_RN_B[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_B unit test at t=" +
str(dataLog.times()[i] * mc.NANO2SEC) +
"sec\n")
#
# check domega_RN_B
#
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.domega_RN_B[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_B unit test at t=" +
str(dataLog.times()[i] * mc.NANO2SEC) +
"sec\n")
# print out success message if no error were found
snippentName = "passFail" + str(case)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("FAILED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
print(testMessages)
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
sunSafePointTestFunction(False, 1)