Source code for test_spinningBodyTwoDOFStateEffector

# ISC License
#
# Copyright (c) 2022, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Unit Test Script
#   Module Name:        spinningBodies
#   Author:             João Vaz Carneiro
#   Creation Date:      October 17, 2022
#

import inspect
import os
import pytest
import numpy
import matplotlib.pyplot as plt

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('simulation')

from Basilisk.utilities import SimulationBaseClass, unitTestSupport, macros
from Basilisk.simulation import spacecraft, spinningBodyTwoDOFStateEffector, gravityEffector
from Basilisk.architecture import messaging


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_

[docs]@pytest.mark.parametrize("cmdTorque1, lock1, theta1Ref, cmdTorque2, lock2, theta2Ref", [ (0.0, False, 0.0, 0.0, False, 0.0) , (0.0, True, 0.0, 0.0, False, 0.0) , (0.0, False, 0.0, 0.0, True, 0.0) , (0.0, True, 0.0, 0.0, True, 0.0) , (1.0, False, 0.0, -2.0, False, 0.0) , (0.0, False, 10.0 * macros.D2R, 0.0, False, -5.0 * macros.D2R) , (0.0, False, -5.0 * macros.D2R, 0.0, False, 10.0 * macros.D2R) ]) def test_spinningBody(show_plots, cmdTorque1, lock1, theta1Ref, cmdTorque2, lock2, theta2Ref): r""" **Validation Test Description** This unit test sets up a spacecraft with a single-axis rotating rigid body attached to a rigid hub. The spinning body's center of mass is off-center from the spinning axis and the position of the axis is arbitrary. The scenario includes gravity acting on both the spacecraft and the effector. **Description of Variables Being Tested** In this file we are checking the principles of conservation of energy and angular momentum. Both the orbital and rotational energy and angular momentum must be maintained when conservative forces like gravity are present. Therefore, the values of the variables - ``finalOrbAngMom`` - ``finalOrbEnergy`` - ``finalRotAngMom`` - ``finalRotEnergy`` against their initial values. """ [testResults, testMessage] = spinningBody(show_plots, cmdTorque1, lock1, theta1Ref, cmdTorque2, lock2, theta2Ref) assert testResults < 1, testMessage
def spinningBody(show_plots, cmdTorque1, lock1, theta1Ref, cmdTorque2, lock2, theta2Ref): __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.0002) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Create two hinged rigid bodies spinningBody = spinningBodyTwoDOFStateEffector.SpinningBodyTwoDOFStateEffector() # Define properties of spinning body spinningBody.mass1 = 100.0 spinningBody.mass2 = 50.0 spinningBody.IS1PntSc1_S1 = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] spinningBody.IS2PntSc2_S2 = [[50.0, 0.0, 0.0], [0.0, 30.0, 0.0], [0.0, 0.0, 40.0]] spinningBody.dcm_S10B = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] spinningBody.dcm_S20S1 = [[0.0, -1.0, 0.0], [0.0, .0, -1.0], [1.0, 0.0, 0.0]] spinningBody.r_Sc1S1_S1 = [[2.0], [-0.5], [0.0]] spinningBody.r_Sc2S2_S2 = [[1.0], [0.0], [-1.0]] spinningBody.r_S1B_B = [[-2.0], [0.5], [-1.0]] spinningBody.r_S2S1_S1 = [[0.5], [-1.5], [-0.5]] spinningBody.s1Hat_S1 = [[0], [0], [1]] spinningBody.s2Hat_S2 = [[0], [-1], [0]] spinningBody.theta1Init = 0 * macros.D2R spinningBody.theta2Init = 5 * macros.D2R spinningBody.k1 = 1000.0 spinningBody.k2 = 500.0 if theta1Ref != 0.0 or theta2Ref != 0.0: spinningBody.c1 = 500 spinningBody.c2 = 200 if lock1: spinningBody.theta1DotInit = 0 * macros.D2R else: spinningBody.theta1DotInit = 2.0 * macros.D2R if lock2: spinningBody.theta2DotInit = 0 * macros.D2R else: spinningBody.theta2DotInit = -1.0 * macros.D2R spinningBody.ModelTag = "SpinningBody" # Add spinning body to spacecraft scObject.addStateEffector(spinningBody) # Create the torque message cmdArray = messaging.ArrayMotorTorqueMsgPayload() cmdArray.motorTorque = [cmdTorque1, cmdTorque2] # [Nm] cmdMsg = messaging.ArrayMotorTorqueMsg().write(cmdArray) spinningBody.motorTorqueInMsg.subscribeTo(cmdMsg) # Create the locking message lockArray = messaging.ArrayEffectorLockMsgPayload() lockFlag = [0, 0] if lock1: lockFlag[0] = 1 if lock2: lockFlag[1] = 1 lockArray.effectorLockFlag = lockFlag lockMsg = messaging.ArrayEffectorLockMsg().write(lockArray) spinningBody.motorLockInMsg.subscribeTo(lockMsg) # Create the reference messages angle1Ref = messaging.HingedRigidBodyMsgPayload() angle1Ref.theta = theta1Ref angle1Ref.thetaDot = 0.0 angle1RefMsg = messaging.HingedRigidBodyMsg().write(angle1Ref) spinningBody.spinningBodyRefInMsgs[0].subscribeTo(angle1RefMsg) angle2Ref = messaging.HingedRigidBodyMsgPayload() angle2Ref.theta = theta2Ref angle2Ref.thetaDot = 0.0 angle2RefMsg = messaging.HingedRigidBodyMsg().write(angle2Ref) spinningBody.spinningBodyRefInMsgs[1].subscribeTo(angle2RefMsg) # Define mass properties of the rigid hub of the spacecraft scObject.hub.mHub = 750.0 scObject.hub.r_BcB_B = [[0.0], [0.0], [1.0]] scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.hub.omega_BN_BInit = [[0.01], [-0.01], [0.01]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, spinningBody) unitTestSim.AddModelToTask(unitTaskName, scObject) # Add Earth gravity to the simulation earthGravBody = gravityEffector.GravBodyData() earthGravBody.planetName = "earth_planet_data" earthGravBody.mu = 0.3986004415E+15 # meters! earthGravBody.isCentralBody = True scObject.gravField.gravBodies = spacecraft.GravBodyVector([earthGravBody]) # Log the spacecraft state message datLog = scObject.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, datLog) # Add energy and momentum variables to log scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totOrbEnergy", "totRotEnergy"]) unitTestSim.AddModelToTask(unitTaskName, scObjectLog) # Initialize the simulation unitTestSim.InitializeSimulation() # Add states to log theta1Data = spinningBody.spinningBodyOutMsgs[0].recorder() theta2Data = spinningBody.spinningBodyOutMsgs[1].recorder() unitTestSim.AddModelToTask(unitTaskName, theta1Data) unitTestSim.AddModelToTask(unitTaskName, theta2Data) # Setup and run the simulation stopTime = 25000*testProcessRate unitTestSim.ConfigureStopTime(stopTime) unitTestSim.ExecuteSimulation() # Extract the logged variables orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy) orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy) theta1 = theta1Data.theta theta1Dot = theta1Data.thetaDot theta2 = theta2Data.theta theta2Dot = theta2Data.thetaDot # Setup the conservation quantities initialOrbAngMom_N = [[orbAngMom_N[0, 1], orbAngMom_N[0, 2], orbAngMom_N[0, 3]]] finalOrbAngMom = [orbAngMom_N[-1]] initialRotAngMom_N = [[rotAngMom_N[0, 1], rotAngMom_N[0, 2], rotAngMom_N[0, 3]]] finalRotAngMom = [rotAngMom_N[-1]] initialOrbEnergy = [[orbEnergy[0, 1]]] finalOrbEnergy = [orbEnergy[-1]] initialRotEnergy = [[rotEnergy[0, 1]]] finalRotEnergy = [rotEnergy[-1]] # Plotting plt.close("all") plt.figure() plt.clf() plt.plot(orbAngMom_N[:, 0] * 1e-9, (orbAngMom_N[:, 1] - orbAngMom_N[0, 1]) / orbAngMom_N[0, 1], orbAngMom_N[:, 0] * 1e-9, (orbAngMom_N[:, 2] - orbAngMom_N[0, 2]) / orbAngMom_N[0, 2], orbAngMom_N[:, 0] * 1e-9, (orbAngMom_N[:, 3] - orbAngMom_N[0, 3]) / orbAngMom_N[0, 3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') plt.title('Orbital Angular Momentum') plt.figure() plt.clf() plt.plot(orbEnergy[:, 0] * 1e-9, (orbEnergy[:, 1] - orbEnergy[0, 1]) / orbEnergy[0, 1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') plt.title('Orbital Energy') plt.figure() plt.clf() plt.plot(rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 1] - rotAngMom_N[0, 1]) / rotAngMom_N[0, 1], rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 2] - rotAngMom_N[0, 2]) / rotAngMom_N[0, 2], rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 3] - rotAngMom_N[0, 3]) / rotAngMom_N[0, 3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') plt.title('Rotational Angular Momentum') plt.figure() plt.clf() plt.plot(rotEnergy[:, 0] * 1e-9, (rotEnergy[:, 1] - rotEnergy[0, 1]) / rotEnergy[0, 1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') plt.title('Rotational Energy') plt.figure() plt.clf() plt.plot(theta1Data.times() * 1e-9, theta1) plt.xlabel('time (s)') plt.ylabel('theta1') plt.figure() plt.clf() plt.plot(theta1Data.times() * 1e-9, theta1Dot) plt.xlabel('time (s)') plt.ylabel('theta1Dot') plt.figure() plt.clf() plt.plot(theta2Data.times() * 1e-9, theta2) plt.xlabel('time (s)') plt.ylabel('theta2') plt.figure() plt.clf() plt.plot(theta2Data.times() * 1e-9, theta2Dot) plt.xlabel('time (s)') plt.ylabel('theta2Dot') if show_plots: plt.show() plt.close("all") # Testing setup accuracy = 1e-12 finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column finalRotEnergy = numpy.delete(finalRotEnergy, 0, axis=1) # remove time column finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column for i in range(0, len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i], initialOrbAngMom_N[i], 3, accuracy): testFailCount += 1 testMessages.append( "FAILED: Spinning Body integrated test failed orbital angular momentum unit test") for i in range(0, len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i], initialRotAngMom_N[i], 3, accuracy): testFailCount += 1 testMessages.append( "FAILED: Spinning Body integrated test failed rotational angular momentum unit test") if cmdTorque1 == 0 and cmdTorque2 == 0 and theta1Ref == 0.0 and theta2Ref == 0.0: for i in range(0, len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i], initialRotEnergy[i], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: Spinning Body integrated test failed rotational energy unit test") for i in range(0, len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i], initialOrbEnergy[i], 1, accuracy): testFailCount += 1 testMessages.append("FAILED: Spinning Body integrated test failed orbital energy unit test") if theta1Ref != 0.0 or theta2Ref != 0.0: if not unitTestSupport.isDoubleEqual(theta1[-1], theta1Ref, 0.01): testFailCount += 1 testMessages.append("FAILED: Spinning Body integrated test failed angle 1 convergence unit test") if not unitTestSupport.isDoubleEqual(theta2[-1], theta2Ref, 0.01): testFailCount += 1 testMessages.append("FAILED: Spinning Body integrated test failed angle 2 convergence unit test") if testFailCount == 0: print("PASSED: " + " Spinning Body gravity integrated test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] if __name__ == "__main__": spinningBody(True, 0.0, False, 0.0 * macros.D2R, 0.0, False, 0.0 * macros.D2R)