#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: spacecraftReconfig
# Author: Hirotaka Kondo
# Creation Date: March 27, 2020
#
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import spacecraftReconfig # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import fswSetupThrusters
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("useRefAttitude", [True, False])
@pytest.mark.parametrize("accuracy", [1e-9])
def test_spacecraftReconfig(show_plots, useRefAttitude, accuracy):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = spacecraftReconfigTestFunction(show_plots, useRefAttitude, accuracy)
assert testResults < 1, testMessage
def spacecraftReconfigTestFunction(show_plots, useRefAttitude, accuracy):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim spacecraftReconfig as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.1) # process rate
testProc = unitTestSim.CreateNewProcess(unitProcessName) # create new process
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # create new task
# Construct algorithm and associated C++ container
module = spacecraftReconfig.spacecraftReconfig()
module.ModelTag = "spacecraftReconfig" # update python name of test spacecraftReconfig
module.targetClassicOED = [0.0000, 0.0000, 0.0000, 0.0001, 0.0002, 0.0003]
module.attControlTime = 400 # [s]
module.mu = orbitalMotion.MU_EARTH * 1e9 # [m^3/s^2]
# Add test spacecraftReconfig to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Chief Navigation Message
#
oe = orbitalMotion.ClassicElements()
oe.a = 20000e3 # [m]
oe.e = 0.1
oe.i = 0.2
oe.Omega = 0.3
oe.omega = 0.4
oe.f = 0.5
(r_BN_N, v_BN_N) = orbitalMotion.elem2rv(orbitalMotion.MU_EARTH*1e9, oe)
chiefNavStateOutData = messaging.NavTransMsgPayload() # Create a structure for the input message
chiefNavStateOutData.timeTag = 0
chiefNavStateOutData.r_BN_N = r_BN_N
chiefNavStateOutData.v_BN_N = v_BN_N
chiefNavStateOutData.vehAccumDV = [0, 0, 0]
chiefInMsg = messaging.NavTransMsg().write(chiefNavStateOutData)
module.chiefTransInMsg.subscribeTo(chiefInMsg)
#
# Deputy Navigation Message
#
oe2 = orbitalMotion.ClassicElements()
oe2.a = (1 + 0.0006) * 7000e3 # [m]
oe2.e = 0.2 + 0.0005
oe2.i = 0.0 + 0.0004
oe2.Omega = 0.0 + 0.0003
oe2.omega = 0.0 + 0.0002
oe2.f = 0.0001
(r_BN_N2, v_BN_N2) = orbitalMotion.elem2rv(orbitalMotion.MU_EARTH*1e9, oe2)
deputyNavStateOutData = messaging.NavTransMsgPayload() # Create a structure for the input message
deputyNavStateOutData.timeTag = 0
deputyNavStateOutData.r_BN_N = r_BN_N2
deputyNavStateOutData.v_BN_N = v_BN_N2
deputyNavStateOutData.vehAccumDV = [0, 0, 0]
deputyInMsg = messaging.NavTransMsg().write(deputyNavStateOutData)
module.deputyTransInMsg.subscribeTo(deputyInMsg)
#
# Deputy Vehicle Config Message
#
vehicleConfigInData = messaging.VehicleConfigMsgPayload()
vehicleConfigInData.massSC = 500
vehicleConfigMsg = messaging.VehicleConfigMsg().write(vehicleConfigInData)
module.vehicleConfigInMsg.subscribeTo(vehicleConfigMsg)
#
# reference attitude message
#
if useRefAttitude:
attRefInData = messaging.AttRefMsgPayload()
attRefInData.sigma_RN = [1.0, 0.0, 0.0]
attRefInData.omega_RN_N = [0.0, 0.0, 0.0]
attRefInData.domega_RN_N = [0.0, 0.0, 0.0]
attRefInMsg = messaging.AttRefMsg().write(attRefInData)
module.attRefInMsg.subscribeTo(attRefInMsg)
#
# thruster configuration message
#
location = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
direction = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] # get thrust in +z direction
fswSetupThrusters.clearSetup()
for i in range(len(location)):
fswSetupThrusters.create(location[i], direction[i], 22.6)
thrConfMsg = fswSetupThrusters.writeConfigMessage()
module.thrustConfigInMsg.subscribeTo(thrConfMsg)
# Setup logging on the test spacecraftReconfig output message so that we get all the writes to it
dataLog = module.attRefOutMsg.recorder()
moduleLog = module.logger("resetPeriod")
unitTestSim.AddModelToTask(unitTaskName, dataLog)
unitTestSim.AddModelToTask(unitTaskName, moduleLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(testProcessRate) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
attOutput = dataLog.sigma_RN
resetPeriod = unitTestSupport.addTimeColumn(moduleLog.times(), moduleLog.resetPeriod)
# set the filtered output truth states
if useRefAttitude:
trueVector = [[1.0,0.0,0.0]]
else:
trueVector = [[0.38532697209248595,
-0.7016349090839732,
-0.4026194572440069]]
trueResetPeriod = 28148.5466910579925752244889736
# compare the spacecraftReconfig results to the truth values
for i in range(0, len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(attOutput[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN" + " unit test at t="
+ str(attOutput[i, 0]*macros.NANO2SEC) + "sec\n")
if (not unitTestSupport.isDoubleEqualRelative(resetPeriod[0,1], trueResetPeriod, accuracy)):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed " + "resetPeriod")
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + module.ModelTag)
print("This test uses an accuracy value of " + str(accuracy))
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_spacecraftReconfig(
False, # show_plots
True, # useRefAttitude
1e-9 # accuracy
)