# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: spacecraftPointing
# Author: Simon van Overeem
# Creation Date: January 7, 2018
#
# The test that is performed in this file checks whether the spacecraftPointing module computes the correct output.
# The inputs of the test are five data points of the chief spacecraft and the deputy spacecraft. From these datapoints
# the orientation of the reference frame with respect to the inertial frame (sigma_R1N) is determined. Furthermore,
# the angular velocity (omega_RN_N) and the angular acceleration (domega_RN_N) are calculated. The outcomes are compared
# to the expected outcome of the module.
import inspect
import os
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import spacecraftPointing # import the module that is to be tested
from Basilisk.utilities import macros
import numpy as np
from Basilisk.architecture import messaging
[docs]
@pytest.mark.parametrize("case", [
(1) # Regular alignment vector
,(2) # Alignment vector aligns with the z-axis of the body frame
])
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
def test_spacecraftPointing(show_plots, case):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = spacecraftPointingTestFunction(show_plots, case)
assert testResults < 1, testMessage
def spacecraftPointingTestFunction(show_plots, case):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.1) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = spacecraftPointing.spacecraftPointing()
module.ModelTag = "spacecraftPointing"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
module.alignmentVector_B = [1.0, 0.0, 0.0]
if (case == 2):
module.alignmentVector_B = [0.0, 0.0, 1.0]
r_BN_N = [[np.cos(0.0), np.sin(0.0), 0.0],
[np.cos(0.001), np.sin(0.001), 0.0],
[np.cos(0.002), np.sin(0.002), 0.0],
[np.cos(0.003), np.sin(0.003), 0.0],
[np.cos(0.004), np.sin(0.004), 0.0]]
r_BN_N2 = [[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]]
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Chief Input Message
#
chiefInputData = messaging.NavTransMsgPayload() # Create a structure for the input message
chiefInputData.r_BN_N = r_BN_N[0]
chiefInMsg = messaging.NavTransMsg().write(chiefInputData)
#
# Deputy Input Message
#
deputyInputData = messaging.NavTransMsgPayload() # Create a structure for the input message
deputyInputData.r_BN_N = r_BN_N2[0]
deputyInMsg = messaging.NavTransMsg().write(deputyInputData)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attReferenceOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.chiefPositionInMsg.subscribeTo(chiefInMsg)
module.deputyPositionInMsg.subscribeTo(deputyInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.1)) # seconds to stop simulation
# Begin the simulation time run set above
# Because it is decided to give the module a set of coordinates for each timestep, a new message has
# to be send for each timestep.
unitTestSim.ExecuteSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(0.2))
chiefInputData.r_BN_N = r_BN_N[1]
chiefInMsg.write(chiefInputData)
deputyInputData.r_BN_N = r_BN_N2[1]
deputyInMsg.write(deputyInputData)
unitTestSim.ExecuteSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(0.3))
chiefInputData.r_BN_N = r_BN_N[2]
chiefInMsg.write(chiefInputData)
deputyInputData.r_BN_N = r_BN_N2[2]
deputyInMsg.write(deputyInputData)
unitTestSim.ExecuteSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(0.4))
chiefInputData.r_BN_N = r_BN_N[3]
chiefInMsg.write(chiefInputData)
deputyInputData.r_BN_N = r_BN_N2[3]
deputyInMsg.write(deputyInputData)
unitTestSim.ExecuteSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(0.5))
chiefInputData.r_BN_N = r_BN_N[4]
chiefInMsg.write(chiefInputData)
deputyInputData.r_BN_N = r_BN_N2[4]
deputyInMsg.write(deputyInputData)
unitTestSim.ExecuteSimulation()
if (case == 1):
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
#
# check sigma_RN
#
moduleOutput = dataLog.sigma_RN
# set the filtered output truth states
trueVector = [
[0., 0., 0.0],
[0., 0., 0.0],
[0., 0., 0.0002500000052],
[0., 0., 0.0005000000417],
[0., 0., 0.0007500001406],
[0., 0., 0.001000000333]
]
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue1", str(accuracy), path)
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
str(dataLog.times()[i]*macros.NANO2SEC) +
"sec\n")
#
# check omega_RN_N
#
moduleOutput = dataLog.omega_RN_N
# set the filtered output truth states
trueVector = [
[0., 0., 0.0],
[0., 0., 0.0],
[0., 0., 0.01],
[0., 0., 0.01],
[0., 0., 0.01],
[0., 0., 0.01]
]
# compare the module results to the truth values
# The first three values of the simulation have to be ignored for omega_RN_N. For this reason, comparing from index 3.
accuracy = 1e-9
unitTestSupport.writeTeXSnippet("toleranceValue2", str(accuracy), path)
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" +
str(dataLog.times()[i]*macros.NANO2SEC) +
"sec\n")
#
# check domega_RN_N
#
moduleOutput = dataLog.domega_RN_N
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
# The first three values of the simulation have to be ignored for domega_RN_N. For this reason, comparing from index 3.
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue3", str(accuracy), path)
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
str(dataLog.times()[i]*macros.NANO2SEC) +
"sec\n")
elif (case == 2):
trueVector = [-1.0/3.0, 1.0/3.0, -1.0/3.0]
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue4", str(accuracy), path)
# check a vector values
if not unitTestSupport.isVectorEqual(np.array(module.sigma_BA), np.array(trueVector), accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed, sigma_BA is calculated incorrectly\n")
# print out success message if no error were found
snippentName = "passFail" + str(case)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("FAILED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_spacecraftPointing(False, 1)