# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import inspect
import os
import numpy
import pytest
from random import random
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraft
from Basilisk.utilities import macros
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import extForceTorque
from Basilisk.utilities import RigidBodyKinematics
from Basilisk.utilities import simIncludeGravBody
from Basilisk.simulation import GravityGradientEffector
from Basilisk.architecture import messaging
def addTimeColumn(time, data):
return numpy.transpose(numpy.vstack([[time], numpy.transpose(data)]))
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("function", ["SCTranslation"
, "SCTransAndRotation"
, "SCRotation"
, "SCTransBOE"
, "SCPointBVsPointC"
, "scOptionalRef"
, "scAccumDV"
, "scAccumDVExtForce"
])
def test_spacecraftAllTest(show_plots, function):
"""Module Unit Test"""
if function == "scOptionalRef":
[testResults, testMessage] = eval(function + '(show_plots, 1e-3)')
elif function == "scAccumDV" or function == "scAccumDVExtForce":
[testResults, testMessage] = eval(function + '()')
else:
[testResults, testMessage] = eval(function + '(show_plots)')
assert testResults < 1, testMessage
[docs]
def SCTranslation(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.planetName = "earth_planet_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody])
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totOrbEnergy"])
unitTestSim.AddModelToTask(unitTaskName, scObjectLog)
unitTestSim.InitializeSimulation()
accuracy = 1e-3
if not unitTestSupport.isArrayEqual(scObject.scStateOutMsg.read().r_BN_N,
[item for sublist in scObject.hub.r_CN_NInit for item in sublist],
3, accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed init pos msg unit test")
if not unitTestSupport.isArrayEqual(scObject.scStateOutMsg.read().v_BN_N,
[item for sublist in scObject.hub.v_CN_NInit for item in sublist],
3, accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed init pos msg unit test")
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N)
orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy)
plt.close("all")
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalAngularMomentumTranslationOnly", "Change in Orbital Angular Momentum Translation Only", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalEnergyTranslationOnly", "Change in Orbital Energy Translation Only", plt, r"width=0.8\textwidth", path)
if show_plots:
plt.show()
plt.close('all')
moduleOutput = dataLog.r_BN_N
truePos = [
[-4072255.7737936215, 7456050.4649078, 5258610.029627514]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,1]]
]
accuracy = 1e-10
for i in range(0,len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(moduleOutput[-1,:],truePos[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed pos unit test")
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed orbital angular momentum unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: SCHub Translation test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " SCHub Translation Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]
def SCTransAndRotation(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.planetName = "earth_planet_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody])
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totOrbEnergy", "totRotEnergy"])
unitTestSim.AddModelToTask(unitTaskName, scObjectLog)
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N)
rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N)
rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy)
orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy)
r_BN_NOutput = dataLog.r_BN_N
sigma_BNOutput = dataLog.sigma_BN
truePos = [
[-4072255.7737936215, 7456050.4649078, 5258610.029627514]
]
trueSigma = [
[3.73034285e-01, -2.39564413e-03, 2.08570797e-01]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialRotAngMom_N = [
[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]
]
finalRotAngMom = [
[rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,1]]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,1]]
]
plt.close('all')
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalAngularMomentumTranslationAndRotation", "Change in Orbital Angular Momentum Translation And Rotation", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInOrbitalEnergyTranslationAndRotation", "Change in Orbital Energy Translation And Rotation", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalAngularMomentumTranslationAndRotation", "Change in Rotational Angular Momentum Translation And Rotation", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalEnergyTranslationAndRotation", "Change in Rotational Energy Translation And Rotation", plt, r"width=0.8\textwidth", path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-8
for i in range(0,len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(r_BN_NOutput[-1,:],truePos[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed pos unit test")
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(sigma_BNOutput[-1,:],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed attitude unit test")
accuracy = 1e-10
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational energy unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Translation and Rotation Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]
def SCRotation(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.001
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Define initial conditions of the spacecraft
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
# BOE for rotational dynamics
h = numpy.dot(numpy.asarray(scObject.hub.IHubPntBc_B),numpy.asarray(scObject.hub.omega_BN_BInit).flatten())
H = numpy.linalg.norm(h)
n3_B = -h/H
# Find DCM
n2_B = numpy.zeros(3)
n2_B[1] = 0.1
n2_B[0] = -n2_B[1]*n3_B[1]/n3_B[0]
n2_B = n2_B/numpy.linalg.norm(n2_B)
n1_B = numpy.cross(n2_B,n3_B)
n1_B = n1_B/(numpy.linalg.norm(n1_B))
dcm_BN = numpy.zeros([3,3])
dcm_BN[:,0] = n1_B
dcm_BN[:,1] = n2_B
dcm_BN[:,2] = n3_B
h3_N = numpy.array([0,0,-H])
h3_B = numpy.dot(dcm_BN,h3_N)
h3_Ncheck = numpy.dot(dcm_BN.transpose(),h3_B)
sigmaCalc = RigidBodyKinematics.C2MRP(dcm_BN)
scObject.hub.sigma_BNInit = [[sigmaCalc[0]], [sigmaCalc[1]], [sigmaCalc[2]]]
scObjectLog = scObject.logger(["totRotAngMomPntC_N", "totRotEnergy"])
unitTestSim.AddModelToTask(unitTaskName, scObjectLog)
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N)
rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy)
rotAngMomMag = numpy.zeros(len(rotAngMom_N))
for i in range(0,len(rotAngMom_N)):
rotAngMomMag[i] = numpy.linalg.norm(numpy.asarray(rotAngMom_N[i,1:4]))
trueSigma = [
[5.72693314e-01, 5.10734375e-01, -3.07377611e-01]
]
initialRotAngMom_N = [
[numpy.linalg.norm(numpy.asarray(rotAngMom_N[0,1:4]))]
]
finalRotAngMom = [
[numpy.linalg.norm(numpy.asarray(rotAngMom_N[-1,1:4]))]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,1]]
]
moduleOutput = addTimeColumn(dataLog.times(), dataLog.sigma_BN)
omega_BNOutput = addTimeColumn(dataLog.times(), dataLog.omega_BN_B)
check = 0
for i in range(0,len(moduleOutput)):
if check == 0 and moduleOutput[i+1,2] < moduleOutput[i,2]:
check = 1
if check == 1 and moduleOutput[i+1,2] > moduleOutput[i,2]:
check = 2
index = i+1
break
sigmaBeforeSwitch = moduleOutput[index-1,1:4]
sigmaBeforeBefore = moduleOutput[index-2,1:4]
sigmaAfterSwitch = moduleOutput[index,:]
deltaT = (moduleOutput[index-1,0] - moduleOutput[index-2,0])*1e-9
yPrime = (sigmaBeforeSwitch - sigmaBeforeBefore)/deltaT
sigmaGhost = sigmaBeforeSwitch + yPrime*deltaT
sigmaAfterAnalytical = - sigmaGhost/numpy.dot(numpy.linalg.norm(numpy.asarray(sigmaGhost)),numpy.linalg.norm(numpy.asarray(sigmaGhost)))
timeArray = numpy.zeros(5)
sigmaArray = numpy.zeros([3,5])
omegaAnalyticalArray = numpy.zeros([3,5])
omegaArray = numpy.zeros([4,5])
for i in range(0, 5):
idx = int(stopTime/timeStep*(i+1)/5)
timeArray[i] = moduleOutput[idx, 0]
sigmaArray[:, i] = moduleOutput[idx, 1:4]
sigma = sigmaArray[:, i]
sigmaNorm = numpy.linalg.norm(sigma)
sigma1 = sigma[0]
sigma2 = sigma[1]
sigma3 = sigma[2]
omegaArray[:,i] = omega_BNOutput[idx, :]
omegaAnalyticalArray[0,i] = -H/(1 + sigmaNorm**2)**2*(8*sigma1*sigma3 - 4*sigma2*(1 - sigmaNorm**2))/scObject.hub.IHubPntBc_B[0][0]
omegaAnalyticalArray[1,i] = -H/(1 + sigmaNorm**2)**2*(8*sigma2*sigma3 + 4*sigma1*(1 - sigmaNorm**2))/scObject.hub.IHubPntBc_B[1][1]
omegaAnalyticalArray[2,i] = -H/(1 + sigmaNorm**2)**2*(4*(-sigma1**2 - sigma2**2 + sigma3**2) + (1 - sigmaNorm**2)**2)/scObject.hub.IHubPntBc_B[2][2]
plt.close("all") # clear out earlier figures
plt.figure()
plt.clf()
plt.plot(moduleOutput[:,0]*1e-9, moduleOutput[:,1], moduleOutput[:,0]*1e-9, moduleOutput[:,2], moduleOutput[:,0]*1e-9, moduleOutput[:,3])
plt.plot(moduleOutput[index,0]*1e-9, moduleOutput[index,1],'bo')
plt.plot(moduleOutput[index,0]*1e-9, sigmaGhost[0],'yo')
plt.plot(moduleOutput[index-1,0]*1e-9, moduleOutput[index-1,1],'bo')
plt.xlabel("Time (s)")
plt.ylabel("MRPs")
unitTestSupport.writeFigureLaTeX("scPlusMRPs", "Attitude of Spacecraft in MRPs", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(moduleOutput[index - 3: index + 3,0]*1e-9, moduleOutput[index - 3: index + 3,1],"b")
plt.plot(moduleOutput[index-1,0]*1e-9, moduleOutput[index-1,1],'bo', label = "Basilisk " + r"$\sigma_{1,t-1}$")
plt.plot(moduleOutput[index,0]*1e-9, moduleOutput[index,1],'ro', label = "Basilisk " + r"$\sigma_{1,t}$")
plt.plot(moduleOutput[index,0]*1e-9, sigmaGhost[0],'ko', label = "Basilisk " + r"$\sigma_{1,0}$")
plt.plot([moduleOutput[index-1,0]*1e-9, moduleOutput[index,0]*1e-9], [moduleOutput[index-1,1], sigmaGhost[0]],'--k')
axes = plt.gca()
axes.set_ylim([-0.5,0.5])
plt.legend(loc ='upper right',numpoints = 1)
plt.xlabel("Time (s)")
plt.ylabel("MRPs")
unitTestSupport.writeFigureLaTeX("scPlusMRPSwitching", "MRP Switching", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMomMag - rotAngMomMag[0])/rotAngMomMag[0])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalAngularMomentumRotationOnly", "Change in Rotational Angular Momentum Rotation Only", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel("Time (s)")
plt.ylabel("Relative Difference")
unitTestSupport.writeFigureLaTeX("scPlusChangeInRotationalEnergyRotationOnly", "Change in Rotational Energy Rotation Only", plt, r"width=0.8\textwidth", path)
plt.figure()
plt.clf()
plt.plot(omega_BNOutput[:,0]*1e-9,omega_BNOutput[:,1],label = r"$\omega_1$" + " Basilisk")
plt.plot(omega_BNOutput[:,0]*1e-9,omega_BNOutput[:,2],label = r"$\omega_2$" + " Basilisk")
plt.plot(omega_BNOutput[:,0]*1e-9,omega_BNOutput[:,3], label = r"$\omega_3$" + " Basilisk")
plt.plot(timeArray*1e-9,omegaAnalyticalArray[0,:],'bo', label = r"$\omega_1$" + " BOE")
plt.plot(timeArray*1e-9,omegaAnalyticalArray[1,:],'go', label = r"$\omega_2$" + " BOE")
plt.plot(timeArray*1e-9,omegaAnalyticalArray[2,:],'ro', label = r"$\omega_3$" + " BOE")
plt.xlabel("Time (s)")
plt.ylabel("Angular Velocity (rad/s)")
plt.legend(loc ='lower right',numpoints = 1, prop = {'size': 6.5})
unitTestSupport.writeFigureLaTeX("scPlusBasiliskVsBOECalcForRotation", "Basilisk Vs BOE Calc For Rotation", plt, r"width=0.8\textwidth", path)
if show_plots:
plt.show()
plt.close("all")
moduleOutput = dataLog.sigma_BN
accuracy = 1e-8
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(moduleOutput[-1],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed attitude unit test")
accuracy = 1e-10
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation and Rotation Integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Rotation Integrated test failed rotational energy unit test")
omegaArray = (numpy.delete(omegaArray, 0, 0)).transpose()
omegaAnalyticalArray = omegaAnalyticalArray.transpose()
for i in range(0,len(omegaAnalyticalArray)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(omegaArray[i],omegaAnalyticalArray[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Rotation Integrated test Rotational BOE unit test")
accuracy = 1e-5
if not unitTestSupport.isArrayEqualRelative(numpy.delete(sigmaAfterSwitch, 0,), sigmaAfterAnalytical,1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Rotation Integrated test failed MRP Switching unit test")
if testFailCount == 0:
print("PASSED: " + "Spacecraft Rotation Integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]
def SCTransBOE(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.1
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Define conditions for the forces and times
F1 = 3.
F2 = -7.
t1 = 3.
t2 = 6.
t3 = 10.
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[F1], [0], [0]]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
# Set the initial values for the states
scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]]
unitTestSim.InitializeSimulation()
stopTime = t1
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[0], [0], [0]]
stopTime = t2
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[F2], [0], [0]]
stopTime = t3
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_BN_NOutput = addTimeColumn(dataLog.times(), dataLog.r_BN_N)
v_BN_NOutput = addTimeColumn(dataLog.times(), dataLog.v_BN_N)
# BOE calcs
a1 = F1/scObject.hub.mHub
a2 = F2/scObject.hub.mHub
v1 = a1*t1
v2 = v1
v3 = v2 + a2*(t3-t2)
x1 = 0.5*v1*t1
x2 = x1 + v2*(t2-t1)
t0 = t2 - v2/a2
x3 = x2 + 0.5*v2*(t0-t2) + 0.5*v3*(t3-t0)
# truth and Basilisk
truthV = [v1, v2, v3]
truthX = [x1, x2, x3]
basiliskV = [v_BN_NOutput[int(t1/timeStep), 1], v_BN_NOutput[int(t2/timeStep), 1], v_BN_NOutput[int(t3/timeStep), 1]]
basiliskX = [r_BN_NOutput[int(t1/timeStep), 1], r_BN_NOutput[int(t2/timeStep), 1], r_BN_NOutput[int(t3/timeStep), 1]]
plt.close('all')
plt.figure()
plt.clf()
plt.plot(r_BN_NOutput[:,0]*1e-9, r_BN_NOutput[:,1],'-b',label = "Basilisk")
plt.plot([t1, t2, t3], [x1, x2, x3],'ro',markersize = 6.5,label = "BOE")
plt.xlabel('time (s)')
plt.ylabel('X (m)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "scPlusTranslationPositionBOE"
PlotTitle = "Translation Position BOE"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(v_BN_NOutput[:,0]*1e-9, v_BN_NOutput[:,1],'-b',label = "Basilisk")
plt.plot([t1, t2, t3], [v1, v2, v3],'ro',markersize = 6.5,label = "BOE")
plt.xlabel('time (s)')
plt.ylabel('X velocity (m/s)')
plt.legend(loc ='lower left',numpoints = 1)
PlotName = "scPlusTranslationVelocityBOE"
PlotTitle = "Translation Velocity BOE"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-10
for i in range(0,3):
# check a vector values
if abs((truthX[i] - basiliskX[i])/truthX[i]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation BOE Integrated test failed pos unit test")
for i in range(0,3):
# check a vector values
if abs((truthV[i] - basiliskV[i])/truthV[i]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Spacecraft Translation BOE Integrated test failed velocity unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Translation BOE Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]
def SCPointBVsPointC(show_plots):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Define location of force
rFBc_B = numpy.array([0.3, -0.7, 0.4])
force_B = numpy.array([0.5, 0.6, -0.2])
torquePntC_B = numpy.cross(rFBc_B,force_B)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[torquePntC_B[0]], [torquePntC_B[1]], [torquePntC_B[2]]]
extFTObject.extForce_B = [[force_B[0]], [force_B[1]], [force_B[2]]]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_CN_NOutput1 = addTimeColumn(dataLog.times(), dataLog.r_CN_N)
sigma_BNOutput1 = addTimeColumn(dataLog.times(), dataLog.sigma_BN)
####################
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Define location of force
rBcB_B = numpy.array([0.4, 0.5, 0.2])
rFB_B = rBcB_B + rFBc_B
torquePntB_B = numpy.cross(rFB_B,force_B)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[torquePntB_B[0]], [torquePntB_B[1]], [torquePntB_B[2]]]
extFTObject.extForce_B = [[force_B[0]], [force_B[1]], [force_B[2]]]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
dataLog2 = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog2)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[rBcB_B[0]], [rBcB_B[1]], [rBcB_B[2]]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
r_CN_NOutput2 = addTimeColumn(dataLog2.times(), dataLog2.r_CN_N)
sigma_BNOutput2 = addTimeColumn(dataLog2.times(), dataLog2.sigma_BN)
plt.figure()
plt.clf()
plt.plot(r_CN_NOutput1[:,0]*1e-9, r_CN_NOutput1[:,1], 'k', label = 'Torque About Point C', linewidth=3.0)
plt.plot(r_CN_NOutput1[:,0]*1e-9,r_CN_NOutput1[:,2], 'k', r_CN_NOutput1[:,0]*1e-9, r_CN_NOutput1[:,3], 'k', linewidth=3.0)
plt.plot(r_CN_NOutput2[:,0]*1e-9, r_CN_NOutput2[:,1], '--c', label = 'Torque About Point B')
plt.plot(r_CN_NOutput2[:,0]*1e-9,r_CN_NOutput2[:,2], '--c', r_CN_NOutput2[:,0]*1e-9, r_CN_NOutput1[:,3], '--c')
plt.xlabel('Time (s)')
plt.ylabel('Inertial Position (m)')
plt.legend(loc ='upper left', handlelength=3.5)
PlotName = "scPlusPointBVsPointCTranslation"
PlotTitle = "PointB Vs PointC Translation"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(sigma_BNOutput1[:,0]*1e-9, sigma_BNOutput1[:,1], 'k', label = 'Torque About Point C', linewidth=3.0)
plt.plot(sigma_BNOutput1[:,0]*1e-9, sigma_BNOutput1[:,2], 'k', sigma_BNOutput1[:,0]*1e-9, sigma_BNOutput1[:,3], 'k', linewidth=3.0)
plt.plot(sigma_BNOutput2[:,0]*1e-9, sigma_BNOutput2[:,1], '--c', label = 'Torque About Point B')
plt.plot(sigma_BNOutput2[:,0]*1e-9, sigma_BNOutput2[:,2], '--c', sigma_BNOutput2[:,0]*1e-9, sigma_BNOutput2[:,3], '--c')
plt.xlabel('Time (s)')
plt.ylabel('MRPs')
plt.legend(loc ='upper right', handlelength=3.5)
PlotName = "scPlusPointBVsPointCAttitude"
PlotTitle = "PointB Vs PointC Attitude"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close('all')
accuracy = 1e-8
if not unitTestSupport.isArrayEqualRelative(r_CN_NOutput1[-1,1:4],r_CN_NOutput2[-1,1:4],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point B Vs Point C test failed pos unit test")
if not unitTestSupport.isArrayEqualRelative(sigma_BNOutput1[-1,1:4],sigma_BNOutput2[-1,1:4],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point B Vs Point C test failed attitude unit test")
if testFailCount == 0:
print("PASSED: " + " Spacecraft Point B Vs Point C Integrated Sim Test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
[docs]
@pytest.mark.parametrize("accuracy", [1e-3])
def scOptionalRef(show_plots, accuracy):
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.1
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# add Earth
gravFactory = simIncludeGravBody.gravBodyFactory()
earth = gravFactory.createEarth()
earth.isCentralBody = True # ensure this is the central gravitational body
scObject.gravField.gravBodies = spacecraft.GravBodyVector(list(gravFactory.gravBodies.values()))
# add gravity gradient effector
ggEff = GravityGradientEffector.GravityGradientEffector()
ggEff.ModelTag = scObject.ModelTag
ggEff.addPlanetName(earth.planetName)
scObject.addDynamicEffector(ggEff)
unitTestSim.AddModelToTask(unitTaskName, ggEff)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[7000000.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[7000.0], [0.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.5], [0.4], [0.3]]
scObject.hub.sigma_BNInit = [[0.], [0.], [1.0]]
scObject.hub.omega_BN_BInit = [[0.5], [-0.4], [0.7]]
# write attitude reference message
attRef = messaging.AttRefMsgPayload()
attRef.sigma_RN = [0.0, 0.0, 1.0]
attRef.omega_RN_N = [0.0001, 0.0002, 0.0003]
attRefMsg = messaging.AttRefMsg().write(attRef)
scObject.attRefInMsg.subscribeTo(attRefMsg)
# write translational reference message
transRef = messaging.TransRefMsgPayload()
transRef.r_RN_N = [1000000, 2000000, 3000000]
transRef.v_RN_N = [2000, 3000, 4000]
transRefMsg = messaging.TransRefMsg().write(transRef)
scObject.transRefInMsg.subscribeTo(transRefMsg)
unitTestSim.InitializeSimulation()
stopTime = 0.2
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
omegaOut = dataLog.omega_BN_B
sigmaOut = dataLog.sigma_BN
r_RN_Out = dataLog.r_BN_N
v_RN_Out = dataLog.v_BN_N
trueSigma = [attRef.sigma_RN]*3
trueOmega = [[-0.0001, -0.0002, 0.0003]]*3
truer_RN_N = [transRef.r_RN_N]*3
truev_RN_N = [transRef.v_RN_N]*3
testFailCount, testMessages = unitTestSupport.compareArray(trueSigma, sigmaOut,
accuracy, "sigma_BN",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray(trueOmega, omegaOut,
accuracy, "omega_BN_B",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray(truer_RN_N, r_RN_Out,
accuracy, "r_RN_N",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray(truev_RN_N, v_RN_Out,
accuracy, "v_RN_N",
testFailCount, testMessages)
if testFailCount == 0:
print("PASSED: scPlus setting optional reference state input message")
else:
print("FAILED: scPlus setting optional reference state input message")
assert testFailCount < 1, testMessages
return [testFailCount, ''.join(testMessages)]
[docs]
def scAccumDV():
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.1
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# add Earth
gravFactory = simIncludeGravBody.gravBodyFactory()
earth = gravFactory.createEarth()
earth.isCentralBody = True # ensure this is the central gravitational body
scObject.gravField.gravBodies = spacecraft.GravBodyVector(list(gravFactory.gravBodies.values()))
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
scObject.hub.r_BcB_B = [[0.0], [100.0], [0.0]]
scObject.hub.IHubPntBc_B = [[500, 0.0, 0.0], [0.0, 200, 0.0], [0.0, 0.0, 300]]
scObject.hub.r_CN_NInit = [[-7000000.0], [0.0], [0.0]]
scObject.hub.v_CN_NInit = [[0.0], [7000.0], [0.0]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.0], [0.0], [numpy.pi/180]]
unitTestSim.InitializeSimulation()
stopTime = 0.5
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
dataAccumDV_CN_B = dataLog.TotalAccumDVBdy
dataAccumDV_BN_B = dataLog.TotalAccumDV_BN_B
dataAccumDV_CN_N = dataLog.TotalAccumDV_CN_N
accuracy = 1e-10
truth_dataAccumDV_CN_B = [0.0, 0.0, 0.0]
truth_dataAccumDV_CN_N = [0.0, 0.0, 0.0]
v_r = numpy.cross(numpy.array(scObject.hub.omega_BN_BInit).T, -numpy.array(scObject.hub.r_BcB_B).T)[0]
truth_dataAccumDV_BN_B = numpy.zeros(3)
for i in range(len(dataLog.times())-1):
if not unitTestSupport.isArrayEqual(dataAccumDV_CN_B[i+1],truth_dataAccumDV_CN_B,3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point C Accumulated DV test failed pos unit test")
truth_dataAccumDV_BN_B += numpy.matmul(RigidBodyKinematics.MRP2C(dataLog.sigma_BN[i+1]),
numpy.matmul(RigidBodyKinematics.MRP2C(dataLog.sigma_BN[i+1]).T,v_r) -
numpy.matmul(RigidBodyKinematics.MRP2C(dataLog.sigma_BN[i]).T,v_r))
if not unitTestSupport.isArrayEqual(dataAccumDV_BN_B[i+1],truth_dataAccumDV_BN_B,3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point B Accumulated DV test failed pos unit test")
if not unitTestSupport.isArrayEqual(dataAccumDV_CN_N[i+1],truth_dataAccumDV_CN_N,3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point C Accumulated DV in inertial frame test failed pos unit test")
if testFailCount == 0:
print("PASSED: Spacecraft Accumulated DV tests with offset CoM")
return [testFailCount, ''.join(testMessages)]
[docs]
def scAccumDVExtForce():
"""Module Unit Test"""
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
timeStep = 0.1
testProcessRate = macros.sec2nano(timeStep) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extForce = numpy.array([random() for _ in range(3)])
extFTObject.extForce_B = [[item] for item in extForce]
scObject.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
# Define initial conditions of the spacecraft
scObject.hub.mHub = 100
dataLog = scObject.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
unitTestSim.InitializeSimulation()
stopTime = 0.5
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
dataAccumDV_CN_N = dataLog.TotalAccumDV_CN_N
timeArraySec = dataLog.times() * macros.NANO2SEC
accuracy = 1e-10
for i in range(len(dataLog.times())):
truth_dataAccumDV_CN_N = extForce * timeArraySec[i] / scObject.hub.mHub
if not unitTestSupport.isArrayEqual(dataAccumDV_CN_N[i], truth_dataAccumDV_CN_N, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Spacecraft Point C Accumulated DV with external force test failed unit test")
if testFailCount == 0:
print("PASSED: Spacecraft Accumulated DV tests with offset CoM")
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
# scAttRef(True, 1e-3)
# SCTranslation(True)
# SCTransAndRotation(True)
# SCRotation(True)
# SCTransBOE(True)
# SCPointBVsPointC(True)
# scOptionalRef(True, 0.001)
# scAccumDV()
scAccumDVExtForce()