# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: rwMotorVoltage
# Author: Hanspeter Schaub
# Creation Date: January 16, 2017
#
import inspect
import os
import numpy as np
import pytest
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import rwMotorVoltage
from Basilisk.utilities import fswSetupRW
from Basilisk.utilities import macros
from Basilisk.architecture import messaging
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
def addTimeColumn(time, data):
return np.transpose(np.vstack([[time], np.transpose(data)]))
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("useLargeVoltage, useAvailability, useTorqueLoop, testName", [
(False, False, False, "One")
, (True, False, False, "Two")
, (False, True, False, "Three")
, (False, False, True, "Four")
])
# update "module" in this function name to reflect the module name
def test_module(show_plots, useLargeVoltage, useAvailability, useTorqueLoop, testName):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots, useLargeVoltage, useAvailability, useTorqueLoop, testName)
assert testResults < 1, testMessage
def run(show_plots, useLargeVoltage, useAvailability, useTorqueLoop, testName):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = rwMotorVoltage.rwMotorVoltage()
module.ModelTag = "rwMotorVoltage"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
# set module parameters
module.VMin = 1.0 # Volts
module.VMax = 11.0 # Volts
if useTorqueLoop:
module.K = 1.5
rwSpeedMessage = messaging.RWSpeedMsgPayload()
rwSpeedMessage.wheelSpeeds = [1.0, 2.0, 1.5, -3.0] # rad/sec Omega's
rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage)
module.rwSpeedInMsg.subscribeTo(rwSpeedInMsg)
unitTestSupport.writeTeXSnippet("Omega1", r"$\bm\Omega = " \
+ str(rwSpeedMessage.wheelSpeeds[0:4]) + "$"
, path)
#
# create BSK messages
#
# Create RW configuration parameter input message
GsMatrix_B = [
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 1.0, 1.0] # the create routine below normalizes these vectors
]
fswSetupRW.clearSetup()
for i in range(4):
fswSetupRW.create(GsMatrix_B[i], # spin axis
0.1, # kg*m^2 J2
0.2) # Nm uMax
rwConfigInMsg = fswSetupRW.writeConfigMessage()
module.rwParamsInMsg.subscribeTo(rwConfigInMsg)
numRW = fswSetupRW.getNumOfDevices()
# Create RW motor torque input message
usMessageData = messaging.ArrayMotorTorqueMsgPayload()
if useLargeVoltage:
usMessageData.motorTorque = [0.5, 0.0, -0.15, -0.5] # [Nm] RW motor torque cmds
else:
usMessageData.motorTorque = [0.05, 0.0, -0.15, -0.2] # [Nm] RW motor torque cmds
rwMotorTorqueInMsg = messaging.ArrayMotorTorqueMsg().write(usMessageData)
module.torqueInMsg.subscribeTo(rwMotorTorqueInMsg)
# create RW availability message
if useAvailability:
rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload()
rwAvailArray = np.zeros(messaging.MAX_EFF_CNT, dtype=int)
rwAvailArray.fill(messaging.AVAILABLE)
rwAvailArray[2] = messaging.UNAVAILABLE # make 3rd RW unavailable
rwAvailabilityMessage.wheelAvailability = rwAvailArray
rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage)
module.rwAvailInMsg.subscribeTo(rwAvailInMsg)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.voltageOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
if useTorqueLoop:
rwSpeedMessage.wheelSpeeds = [1.1, 2.1, 1.1, -4.1] # rad/sec Omega's
rwSpeedInMsg.write(rwSpeedMessage)
unitTestSupport.writeTeXSnippet("Omega2", r"$\bm\Omega = " \
+ str(rwSpeedMessage.wheelSpeeds[0:4]) + "$"
, path)
unitTestSim.ConfigureStopTime(macros.sec2nano(1.5)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# reset the module to test this functionality
module.Reset(1) # this module reset function needs a time input (in NanoSeconds)
# run the module again for an additional 1.0 seconds
unitTestSim.ConfigureStopTime(macros.sec2nano(3.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
moduleOutput = dataLog.voltage[:, :numRW]
print(moduleOutput)
# set the filtered output truth states
trueVector=[];
if not useLargeVoltage and not useAvailability and not useTorqueLoop:
trueVector = [
[3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
]
if useLargeVoltage and not useAvailability and not useTorqueLoop:
trueVector = [
[11., 0., -8.5, -11.]
, [11., 0., -8.5, -11.]
, [11., 0., -8.5, -11.]
, [11., 0., -8.5, -11.]
, [11., 0., -8.5, -11.]
, [11., 0., -8.5, -11.]
, [11., 0., -8.5, -11.]
]
if not useLargeVoltage and useAvailability and not useTorqueLoop:
trueVector = [
[3.5, 0., 0., -11.]
, [3.5, 0., 0., -11.]
, [3.5, 0., 0., -11.]
, [3.5, 0., 0., -11.]
, [3.5, 0., 0., -11.]
, [3.5, 0., 0., -11.]
, [3.5, 0., 0., -11.]
]
if not useLargeVoltage and not useAvailability and useTorqueLoop:
trueVector = [
[3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [5.75, -2.5, -11., -9.5]
, [3.5, 0., -8.5, -11.]
, [3.5, 0., -8.5, -11.]
, [7.25, 0., -11., -11.]
]
# compare the module results to the truth values
accuracy = 1e-10
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "Output Vector",
testFailCount, testMessages)
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
# plot a sample variable.
# plt.close("all") # close all prior figures so we start with a clean slate
# plt.figure(1)
# plt.plot(variableState[:, 0]*macros.NANO2SEC, variableState[:, 1],
# label='Case useLargeVoltage = ' + str(useLargeVoltage))
# plt.legend(loc='upper left')
# plt.xlabel('Time [s]')
# plt.ylabel('Variable Description [unit]')
# if show_plots:
# plt.show()
# plt.close('all')
# print out success message if no error were found
snippentName = "passFail" + testName
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# write TeX Tables for documentation
moduleOutput = addTimeColumn(dataLog.times(), dataLog.voltage)[:, :numRW+1]
resultTable = moduleOutput
resultTable[:, 0] = macros.NANO2SEC * resultTable[:, 0]
diff = np.delete(moduleOutput, 0, 1) - trueVector
resultTable = np.insert(resultTable, list(range(2, 2 + len(diff.transpose()))), diff, axis=1)
tableName = "test" + str(useLargeVoltage) + str(useAvailability) + str(useTorqueLoop)
tableHeaders = ["time [s]", "$V_{s,1}$", "Error", "$V_{s,2}$", "Error", "$V_{s,3}$", "Error", "$V_{s,4}$", "Error"]
caption = 'RW voltage output for case {\\tt useLargeVoltage = ' + str(useLargeVoltage) \
+ ', useAvailability = ' + str(useAvailability) \
+ ', useTorqueLoop = ' + str(useTorqueLoop) + '}.'
unitTestSupport.writeTableLaTeX(
tableName,
tableHeaders,
caption,
resultTable,
path)
unitTestSupport.writeTeXSnippet("us"+ str(useLargeVoltage) + str(useAvailability) + str(useTorqueLoop)
, "$\\bm u_s = " + str(usMessageData.motorTorque[0:numRW]) + "$"
, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_module( # update "module" in function name
False
,False # useLargeVoltage
,False # useAvailability
,True # useTorqueLoop
,"Four" # testName
)