#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: rwMotorTorque
# Author: Hanspeter Schaub
# Creation Date: July 4, 2016
#
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import rwMotorTorque
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
# update "module" in this function name to reflect the module name
[docs]
def test_rwMotorTorque(show_plots):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = rwMotorTorqueTest(show_plots)
assert testResults < 1, testMessage
def rwMotorTorqueTest(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = rwMotorTorque.rwMotorTorque()
module.ModelTag = "rwMotorTorque"
# Initialize module variables
controlAxes_B = [
1,0,0
,0,1,0
,0,0,1
]
module.controlAxes_B = controlAxes_B
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# attControl message
inputMessageData = messaging.CmdTorqueBodyMsgPayload() # Create a structure for the input message
requestedTorque = [1.0, -0.5, 0.7] # Set up a list as a 3-vector
inputMessageData.torqueRequestBody = requestedTorque # write torque request to input message
cmdTorqueInMsg = messaging.CmdTorqueBodyMsg().write(inputMessageData)
# wheelConfigData message
rwConfigParams = messaging.RWArrayConfigMsgPayload()
rwConfigParams.GsMatrix_B = [
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
0.5773502691896258, 0.5773502691896258, 0.5773502691896258
]
rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1]
rwConfigParams.numRW = 4
rwConfigInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams)
# wheelAvailability message
rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload()
avail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE]
rwAvailabilityMessage.wheelAvailability = avail
rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.rwMotorTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.vehControlInMsg.subscribeTo(cmdTorqueInMsg)
module.rwParamsInMsg.subscribeTo(rwConfigInMsg)
module.rwAvailInMsg.subscribeTo(rwAvailInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
module.Reset(0)
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
moduleOutput = dataLog.motorTorque
# print('\n', moduleOutput)
# set the output truth states
ans = [0]*messaging.MAX_EFF_CNT
ans[0:4] = [-0.8, 0.7000000000000001, -0.5, -0.3464101615137755]
trueVector = [
ans,
ans
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector[i], rwConfigParams.numRW, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed motorTorque unit test at t=" +
str(dataLog.times()[i]*macros.NANO2SEC) +
"sec\n")
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + module.ModelTag)
else:
print(testMessages)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_rwMotorTorque(False)