Source code for test_rwMotorTorque

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        rwMotorTorque
#   Author:             Hanspeter Schaub
#   Creation Date:      July 4, 2016
#

from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import rwMotorTorque
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.

# update "module" in this function name to reflect the module name
[docs] def test_rwMotorTorque(show_plots): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = rwMotorTorqueTest(show_plots) assert testResults < 1, testMessage
def rwMotorTorqueTest(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = rwMotorTorque.rwMotorTorque() module.ModelTag = "rwMotorTorque" # Initialize module variables controlAxes_B = [ 1,0,0 ,0,1,0 ,0,0,1 ] module.controlAxes_B = controlAxes_B # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # attControl message inputMessageData = messaging.CmdTorqueBodyMsgPayload() # Create a structure for the input message requestedTorque = [1.0, -0.5, 0.7] # Set up a list as a 3-vector inputMessageData.torqueRequestBody = requestedTorque # write torque request to input message cmdTorqueInMsg = messaging.CmdTorqueBodyMsg().write(inputMessageData) # wheelConfigData message rwConfigParams = messaging.RWArrayConfigMsgPayload() rwConfigParams.GsMatrix_B = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258 ] rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1] rwConfigParams.numRW = 4 rwConfigInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams) # wheelAvailability message rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload() avail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE] rwAvailabilityMessage.wheelAvailability = avail rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.rwMotorTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.vehControlInMsg.subscribeTo(cmdTorqueInMsg) module.rwParamsInMsg.subscribeTo(rwConfigInMsg) module.rwAvailInMsg.subscribeTo(rwAvailInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() module.Reset(0) # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) moduleOutput = dataLog.motorTorque # print('\n', moduleOutput) # set the output truth states ans = [0]*messaging.MAX_EFF_CNT ans[0:4] = [-0.8, 0.7000000000000001, -0.5, -0.3464101615137755] trueVector = [ ans, ans ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleOutput[i], trueVector[i], rwConfigParams.numRW, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed motorTorque unit test at t=" + str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + module.ModelTag) else: print(testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_rwMotorTorque(False)