#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import matplotlib.pyplot as plt
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import rateServoFullNonlinear # import the module that is to be tested
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("rwNum", [4, 0])
@pytest.mark.parametrize("intGain", [0.01, -1])
@pytest.mark.parametrize("omegap_BastR_B", [(1.87766650e-04, -3.91233583e-05, 3.56369489e-05), (0, 0, 0)])
@pytest.mark.parametrize("omega_BastR_B", [(-2.23886891e-02, 2.47942516e-02, -2.55601849e-02), (0, 0, 0)])
@pytest.mark.parametrize("integralLimit", [0, 20])
@pytest.mark.parametrize("useRwAvailability", ["NO", "ON", "OFF"])
def test_rate_servo_full_nonlinear(show_plots, rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit,
useRwAvailability):
"""Module Unit Test"""
[testResults, testMessage] = rate_servo_full_nonlinear(show_plots, rwNum, intGain, omegap_BastR_B, omega_BastR_B,
integralLimit, useRwAvailability)
assert testResults < 1, testMessage
def rate_servo_full_nonlinear(show_plots,rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit,
useRwAvailability):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
#__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = rateServoFullNonlinear.rateServoFullNonlinear()
module.ModelTag = "rate_servo"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# configure module parameters
module.Ki = intGain
module.P = 150.0
module.integralLimit = integralLimit
module.knownTorquePntB_B = (1,1,1)
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message
sigma_BR = np.array([0.3, -0.5, 0.7])
guidCmdData.sigma_BR = sigma_BR
omega_BR_B = np.array([0.010, -0.020, 0.015])
guidCmdData.omega_BR_B = omega_BR_B
omega_RN_B = np.array([-0.02, -0.01, 0.005])
guidCmdData.omega_RN_B = omega_RN_B
domega_RN_B = np.array([0.0002, 0.0003, 0.0001])
guidCmdData.domega_RN_B = domega_RN_B
guidInMsg = messaging.AttGuidMsg().write(guidCmdData)
# vehicleConfigData Message:
vehicleConfigOut = messaging.VehicleConfigMsgPayload()
I = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
vehicleConfigOut.ISCPntB_B = I
vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut)
# wheelSpeeds Message
rwSpeedMessage = messaging.RWSpeedMsgPayload()
Omega = [10.0, 25.0, 50.0, 100.0]
rwSpeedMessage.wheelSpeeds = Omega
rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage)
# wheelConfigData message
jsList = []
GsMatrix_B = []
def writeMsgInWheelConfiguration():
rwConfigParams = messaging.RWArrayConfigMsgPayload()
rwConfigParams.GsMatrix_B = [
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
0.5773502691896258, 0.5773502691896258, 0.5773502691896258
]
rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1]
rwConfigParams.numRW = rwNum
rwParamInMsg = messaging.RWArrayConfigMsg().write((rwConfigParams))
return rwConfigParams.JsList, rwConfigParams.GsMatrix_B, rwParamInMsg
jsList, GsMatrix_B, rwParamInMsg = writeMsgInWheelConfiguration()
# wheelAvailability message
rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload()
if useRwAvailability != "NO":
if useRwAvailability == "ON":
rwAvailabilityMessage.wheelAvailability = [messaging.AVAILABLE, messaging.AVAILABLE,
messaging.AVAILABLE, messaging.AVAILABLE]
elif useRwAvailability == "OFF":
rwAvailabilityMessage.wheelAvailability = [messaging.UNAVAILABLE, messaging.UNAVAILABLE,
messaging.UNAVAILABLE, messaging.UNAVAILABLE]
else:
print("WARNING: unknown rw availability status")
rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage)
else:
# set default availability
rwAvailabilityMessage.wheelAvailability = [messaging.AVAILABLE, messaging.AVAILABLE,
messaging.AVAILABLE, messaging.AVAILABLE]
# rateSteering message
rateSteeringMsg = messaging.RateCmdMsgPayload()
rateSteeringMsg.omega_BastR_B = omega_BastR_B
rateSteeringMsg.omegap_BastR_B = omegap_BastR_B
rateCmdInMsg = messaging.RateCmdMsg().write(rateSteeringMsg)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.cmdTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Initialize the test module configuration data
module.guidInMsg.subscribeTo(guidInMsg)
module.vehConfigInMsg.subscribeTo(vcInMsg)
module.rwParamsInMsg.subscribeTo(rwParamInMsg)
module.vehConfigInMsg.subscribeTo(vcInMsg)
module.rwSpeedsInMsg.subscribeTo(rwSpeedInMsg)
module.rateSteeringInMsg.subscribeTo(rateCmdInMsg)
if useRwAvailability != "NO":
module.rwAvailInMsg.subscribeTo(rwAvailInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
module.Reset(1) # this module reset function needs a time input (in NanoSeconds)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# set the filtered output truth states
LrTrue = findTrueTorques(module, guidCmdData, rwSpeedMessage, vehicleConfigOut, jsList,
rwNum, GsMatrix_B, rwAvailabilityMessage,rateSteeringMsg)
# compare the module results to the truth values
accuracy = 1e-8
for i in range(0, len(LrTrue)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], LrTrue[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed torqueRequestBody unit test at t="
+ str(dataLog.times()[i] * macros.NANO2SEC) + "sec \n")
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
if show_plots:
plt.show()
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: " + module.ModelTag)
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def findTrueTorques(module,guidCmdData,rwSpeedMessage,vehicleConfigOut,jsList,numRW,GsMatrix_B,rwAvailMsg,rateSteeringMsg ):
Lr = []
#Read in variables
L = np.asarray(module.knownTorquePntB_B)
steps = [0, 0, .5, 0, .5]
omega_BR_B = np.asarray(guidCmdData.omega_BR_B)
omega_RN_B = np.asarray(guidCmdData.omega_RN_B)
omega_BN_B = omega_BR_B + omega_RN_B #find body rate
domega_RN_B = np.asarray(guidCmdData.domega_RN_B)
omega_BastR_B = np.asarray(rateSteeringMsg.omega_BastR_B)
omegap_BastR_B = np.asarray(rateSteeringMsg.omegap_BastR_B) #body-frame derivative of omega_BastR_B
omega_BastN_B = omega_BastR_B+omega_RN_B
omega_BBast_B = omega_BN_B - omega_BastN_B
Isc = np.asarray(vehicleConfigOut.ISCPntB_B)
Isc = np.reshape(Isc, (3, 3))
Ki = module.Ki
P = module.P
jsVec = jsList
GsMatrix_B_array = np.asarray(GsMatrix_B)
GsMatrix_B_array = np.reshape(GsMatrix_B_array[0:numRW * 3], (numRW, 3))
#Compute toruqes
for i in range(len(steps)):
dt = steps[i]
if dt == 0:
zVec = np.asarray([0, 0, 0])
#evaluate integral term
if Ki > 0 and abs(module.integralLimit) > 0: #if integral feedback is on
zVec = dt * omega_BBast_B + zVec # z = integral(del_omega)
# Make sure each component is less than the integral limit
for i in range(3):
if zVec[i] > module.integralLimit:
zVec[i] = zVec[i]/abs(zVec[i])*module.integralLimit
else: #integral gain turned off/negative setting
zVec = np.asarray([0, 0, 0])
#compute torque Lr
Lr0 = Ki * zVec # +K*sigmaBR
Lr1 = Lr0 + P * omega_BBast_B # +P*deltaOmega
GsHs = np.array([0,0,0])
if numRW > 0:
for i in range(numRW):
if rwAvailMsg.wheelAvailability[i] == 0: # Make RW availability check
GsHs = GsHs + np.dot(GsMatrix_B_array[i, :], jsVec[i]*(np.dot(omega_BN_B, GsMatrix_B_array[i, :]) + rwSpeedMessage.wheelSpeeds[i]))
# J_s*(dot(omegaBN_B,Gs_vec)+Omega_wheel)
Lr2 = Lr1 - np.cross(omega_BastN_B, (Isc.dot(omega_BN_B)+GsHs)) # - omega_BastN x ([I]omega + [Gs]h_s)
Lr3 = Lr2 - Isc.dot(omegap_BastR_B + domega_RN_B - np.cross(omega_BN_B, omega_RN_B))
# - [I](d(omega_B^ast/R)/dt + d(omega_r)/dt - omega x omega_r)
Lr4 = Lr3 + L
Lr4 = -Lr4
Lr.append(np.ndarray.tolist(Lr4))
return Lr
if __name__ == "__main__":
test_rate_servo_full_nonlinear(False, #show plots T/F
4, # Number of RW
0.01, # Integral Gain
(0, 0, 0), # omegap_BastR_B
(0, 0, 0), # omega_BastR_B
20, # integraLimit
"ON") # useRwAvailability