Source code for test_rateServoFullNonlinear

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

import matplotlib.pyplot as plt
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import rateServoFullNonlinear  # import the module that is to be tested
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_


[docs] @pytest.mark.parametrize("rwNum", [4, 0]) @pytest.mark.parametrize("intGain", [0.01, -1]) @pytest.mark.parametrize("omegap_BastR_B", [(1.87766650e-04, -3.91233583e-05, 3.56369489e-05), (0, 0, 0)]) @pytest.mark.parametrize("omega_BastR_B", [(-2.23886891e-02, 2.47942516e-02, -2.55601849e-02), (0, 0, 0)]) @pytest.mark.parametrize("integralLimit", [0, 20]) @pytest.mark.parametrize("useRwAvailability", ["NO", "ON", "OFF"]) def test_rate_servo_full_nonlinear(show_plots, rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit, useRwAvailability): """Module Unit Test""" [testResults, testMessage] = rate_servo_full_nonlinear(show_plots, rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit, useRwAvailability) assert testResults < 1, testMessage
def rate_servo_full_nonlinear(show_plots,rwNum, intGain, omegap_BastR_B, omega_BastR_B, integralLimit, useRwAvailability): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. #__tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = rateServoFullNonlinear.rateServoFullNonlinear() module.ModelTag = "rate_servo" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # configure module parameters module.Ki = intGain module.P = 150.0 module.integralLimit = integralLimit module.knownTorquePntB_B = (1,1,1) # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message sigma_BR = np.array([0.3, -0.5, 0.7]) guidCmdData.sigma_BR = sigma_BR omega_BR_B = np.array([0.010, -0.020, 0.015]) guidCmdData.omega_BR_B = omega_BR_B omega_RN_B = np.array([-0.02, -0.01, 0.005]) guidCmdData.omega_RN_B = omega_RN_B domega_RN_B = np.array([0.0002, 0.0003, 0.0001]) guidCmdData.domega_RN_B = domega_RN_B guidInMsg = messaging.AttGuidMsg().write(guidCmdData) # vehicleConfigData Message: vehicleConfigOut = messaging.VehicleConfigMsgPayload() I = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] vehicleConfigOut.ISCPntB_B = I vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut) # wheelSpeeds Message rwSpeedMessage = messaging.RWSpeedMsgPayload() Omega = [10.0, 25.0, 50.0, 100.0] rwSpeedMessage.wheelSpeeds = Omega rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage) # wheelConfigData message jsList = [] GsMatrix_B = [] def writeMsgInWheelConfiguration(): rwConfigParams = messaging.RWArrayConfigMsgPayload() rwConfigParams.GsMatrix_B = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258 ] rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1] rwConfigParams.numRW = rwNum rwParamInMsg = messaging.RWArrayConfigMsg().write((rwConfigParams)) return rwConfigParams.JsList, rwConfigParams.GsMatrix_B, rwParamInMsg jsList, GsMatrix_B, rwParamInMsg = writeMsgInWheelConfiguration() # wheelAvailability message rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload() if useRwAvailability != "NO": if useRwAvailability == "ON": rwAvailabilityMessage.wheelAvailability = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE] elif useRwAvailability == "OFF": rwAvailabilityMessage.wheelAvailability = [messaging.UNAVAILABLE, messaging.UNAVAILABLE, messaging.UNAVAILABLE, messaging.UNAVAILABLE] else: print("WARNING: unknown rw availability status") rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage) else: # set default availability rwAvailabilityMessage.wheelAvailability = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE] # rateSteering message rateSteeringMsg = messaging.RateCmdMsgPayload() rateSteeringMsg.omega_BastR_B = omega_BastR_B rateSteeringMsg.omegap_BastR_B = omegap_BastR_B rateCmdInMsg = messaging.RateCmdMsg().write(rateSteeringMsg) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.cmdTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # Initialize the test module configuration data module.guidInMsg.subscribeTo(guidInMsg) module.vehConfigInMsg.subscribeTo(vcInMsg) module.rwParamsInMsg.subscribeTo(rwParamInMsg) module.vehConfigInMsg.subscribeTo(vcInMsg) module.rwSpeedsInMsg.subscribeTo(rwSpeedInMsg) module.rateSteeringInMsg.subscribeTo(rateCmdInMsg) if useRwAvailability != "NO": module.rwAvailInMsg.subscribeTo(rwAvailInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() module.Reset(1) # this module reset function needs a time input (in NanoSeconds) unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # set the filtered output truth states LrTrue = findTrueTorques(module, guidCmdData, rwSpeedMessage, vehicleConfigOut, jsList, rwNum, GsMatrix_B, rwAvailabilityMessage,rateSteeringMsg) # compare the module results to the truth values accuracy = 1e-8 for i in range(0, len(LrTrue)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], LrTrue[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed torqueRequestBody unit test at t=" + str(dataLog.times()[i] * macros.NANO2SEC) + "sec \n") # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures if show_plots: plt.show() # print out success message if no error were found if testFailCount == 0: print("PASSED: " + module.ModelTag) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def findTrueTorques(module,guidCmdData,rwSpeedMessage,vehicleConfigOut,jsList,numRW,GsMatrix_B,rwAvailMsg,rateSteeringMsg ): Lr = [] #Read in variables L = np.asarray(module.knownTorquePntB_B) steps = [0, 0, .5, 0, .5] omega_BR_B = np.asarray(guidCmdData.omega_BR_B) omega_RN_B = np.asarray(guidCmdData.omega_RN_B) omega_BN_B = omega_BR_B + omega_RN_B #find body rate domega_RN_B = np.asarray(guidCmdData.domega_RN_B) omega_BastR_B = np.asarray(rateSteeringMsg.omega_BastR_B) omegap_BastR_B = np.asarray(rateSteeringMsg.omegap_BastR_B) #body-frame derivative of omega_BastR_B omega_BastN_B = omega_BastR_B+omega_RN_B omega_BBast_B = omega_BN_B - omega_BastN_B Isc = np.asarray(vehicleConfigOut.ISCPntB_B) Isc = np.reshape(Isc, (3, 3)) Ki = module.Ki P = module.P jsVec = jsList GsMatrix_B_array = np.asarray(GsMatrix_B) GsMatrix_B_array = np.reshape(GsMatrix_B_array[0:numRW * 3], (numRW, 3)) #Compute toruqes for i in range(len(steps)): dt = steps[i] if dt == 0: zVec = np.asarray([0, 0, 0]) #evaluate integral term if Ki > 0 and abs(module.integralLimit) > 0: #if integral feedback is on zVec = dt * omega_BBast_B + zVec # z = integral(del_omega) # Make sure each component is less than the integral limit for i in range(3): if zVec[i] > module.integralLimit: zVec[i] = zVec[i]/abs(zVec[i])*module.integralLimit else: #integral gain turned off/negative setting zVec = np.asarray([0, 0, 0]) #compute torque Lr Lr0 = Ki * zVec # +K*sigmaBR Lr1 = Lr0 + P * omega_BBast_B # +P*deltaOmega GsHs = np.array([0,0,0]) if numRW > 0: for i in range(numRW): if rwAvailMsg.wheelAvailability[i] == 0: # Make RW availability check GsHs = GsHs + np.dot(GsMatrix_B_array[i, :], jsVec[i]*(np.dot(omega_BN_B, GsMatrix_B_array[i, :]) + rwSpeedMessage.wheelSpeeds[i])) # J_s*(dot(omegaBN_B,Gs_vec)+Omega_wheel) Lr2 = Lr1 - np.cross(omega_BastN_B, (Isc.dot(omega_BN_B)+GsHs)) # - omega_BastN x ([I]omega + [Gs]h_s) Lr3 = Lr2 - Isc.dot(omegap_BastR_B + domega_RN_B - np.cross(omega_BN_B, omega_RN_B)) # - [I](d(omega_B^ast/R)/dt + d(omega_r)/dt - omega x omega_r) Lr4 = Lr3 + L Lr4 = -Lr4 Lr.append(np.ndarray.tolist(Lr4)) return Lr if __name__ == "__main__": test_rate_servo_full_nonlinear(False, #show plots T/F 4, # Number of RW 0.01, # Integral Gain (0, 0, 0), # omegap_BastR_B (0, 0, 0), # omega_BastR_B 20, # integraLimit "ON") # useRwAvailability