#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: mtbFeedforward
# Author: Henry Macanas
# Creation Date: 06 18, 2021
#
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging # import the message definitions
from Basilisk.fswAlgorithms import mtbFeedforward # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
accuracy = 1E-12
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
def test_mtbFeedforward_module(): # update "module" in this function name to reflect the module name
r"""
**Validation Test Description**
This script tests that the torqueRequestBody vector is computed as
expected and that the algorithm doesn't fail when given inputs with a
value of zero.
**Description of Variables Being Tested**
In this file we are checking the values of the output message variable:
- ``torqueRequestBody``
"""
# each test method requires a single assert method to be called
# pass on the testPlotFixture so that the main test function may set the DataStore attributes
[testResults, testMessage] = mtbFeedforwardModuleTestFunction()
assert testResults < 1, testMessage
def mtbFeedforwardModuleTestFunction():
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Initialize module under test's config message and add module to runtime call list
module = mtbFeedforward.mtbFeedforward()
module.ModelTag = "mrpFeedback" # update python name of test module
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize CmdTorqueBodyMsg
vehControlInMsgContainer = messaging.CmdTorqueBodyMsgPayload()
vehControlInMsgContainer.torqueRequestBody = [0., 0., 0.]
vehControlInMsg = messaging.CmdTorqueBodyMsg().write(vehControlInMsgContainer)
# Initialize DipoleRequestBodyMsg
dipoleRequestMtbInMsgContainer = messaging.MTBCmdMsgPayload()
dipoleRequestMtbInMsgContainer.mtbDipoleCmds = [1., 2., 3.]
dipoleRequestMtbInMsg = messaging.MTBCmdMsg().write(dipoleRequestMtbInMsgContainer)
# Initialize TAMSensorBodyMsg
tamSensorBodyInMsgContainer = messaging.TAMSensorBodyMsgPayload()
tamSensorBodyInMsgContainer.tam_B = [ 1E-5, -3E-5, 5E-5]
tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer)
# Initialize MTBArrayConfigMsg
mtbArrayConfigParamsInMsgContainer = messaging.MTBArrayConfigMsgPayload()
mtbArrayConfigParamsInMsgContainer.numMTB = 3
mtbArrayConfigParamsInMsgContainer.maxMtbDipoles = [1E3, 1E3, 1E3]
mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [1., 0., 0., 0., 1., 0., 0., 0., 1.]
mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer)
# Setup logging on the test module output message so that we get all the writes to it
resultVehControlOutMsg = module.vehControlOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, resultVehControlOutMsg)
# connect the message interfaces
module.vehControlInMsg.subscribeTo(vehControlInMsg)
module.dipoleRequestMtbInMsg.subscribeTo(dipoleRequestMtbInMsg)
module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg)
module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg)
# Set the simulation time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.0)) # seconds to stop simulation
unitTestSim.InitializeSimulation()
'''
TEST 1:
Check that dipoles are non-zero expected value.
'''
unitTestSim.ExecuteSimulation()
m = np.array(dipoleRequestMtbInMsgContainer.mtbDipoleCmds[0:3])
b = np.array(tamSensorBodyInMsgContainer.tam_B)
expectedTorque = -np.cross(m, b)
testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque,
resultVehControlOutMsg.torqueRequestBody[0],
accuracy,
"torqueRequestBody",
testFailCount, testMessages)
'''
TEST 2:
Check that torqueRequestBody is zero when b field is zero.
'''
tamSensorBodyInMsgContainer.tam_B = [0., 0., 0.]
tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer)
module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg)
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
expectedTorque = [0., 0., 0.]
testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque,
resultVehControlOutMsg.torqueRequestBody[0],
accuracy,
"torqueRequestBody",
testFailCount, testMessages)
'''
TEST 3:
Check that torqueRequestBody is zero when dipoles are zero.
'''
tamSensorBodyInMsgContainer.tam_B = [1E-5, -3E-5, 5E-5]
tamSensorBodyInMsg = messaging.TAMSensorBodyMsg().write(tamSensorBodyInMsgContainer)
module.tamSensorBodyInMsg.subscribeTo(tamSensorBodyInMsg)
dipoleRequestMtbInMsgContainer.mtbDipoleCmds = [0., 0., 0.]
dipoleRequestMtbInMsg = messaging.MTBCmdMsg().write(dipoleRequestMtbInMsgContainer)
module.dipoleRequestMtbInMsg.subscribeTo(dipoleRequestMtbInMsg)
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
expectedTorque = [0., 0., 0.]
testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque,
resultVehControlOutMsg.torqueRequestBody[0],
accuracy,
"torqueRequestBody",
testFailCount, testMessages)
'''
TEST 4:
Check that torqueRequestBody is non-zero expected value with
non-trivial Gt matrix.
'''
dipoleRequestMtbInMsgContainer.mtbDipoleCmds = [7., -3.]
dipoleRequestMtbInMsg = messaging.MTBCmdMsg().write(dipoleRequestMtbInMsgContainer)
module.dipoleRequestMtbInMsg.subscribeTo(dipoleRequestMtbInMsg)
beta = 45. * np.pi / 180.
Gt = np.array([[np.cos(beta), -np.sin(beta)],[np.sin(beta), np.cos(beta)], [0., 0.]])
mtbArrayConfigParamsInMsgContainer.numMTB = 2
mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [Gt[0, 0], Gt[0, 1],
Gt[1, 0], Gt[1, 1],
Gt[2, 0], Gt[2, 1]]
mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer)
module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg)
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
m = Gt @ np.array(dipoleRequestMtbInMsgContainer.mtbDipoleCmds[0:2])
b = np.array(tamSensorBodyInMsgContainer.tam_B)
expectedTorque = -np.cross(m, b)
testFailCount, testMessages = unitTestSupport.compareVector(expectedTorque,
resultVehControlOutMsg.torqueRequestBody[0],
accuracy,
"torqueRequestBody",
testFailCount, testMessages)
print("Accuracy used: " + str(accuracy))
if testFailCount == 0:
print("PASSED: mtbFeedforward unit test")
else:
print("Failed: mtbFeedforward unit test")
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_mtbFeedforward_module()