# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: mrpRotation
# Author: Hanspeter Schaub
# Creation Date: May 20, 2018
#
import inspect
import os
import sys
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
import numpy as np
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import mrpRotation # import the module that is to be tested
from Basilisk.utilities import macros as mc
from Basilisk.architecture import messaging
sys.path.append(path + '/Support')
import truth_mrpRotation as truth
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
[docs]
@pytest.mark.parametrize("cmdStateFlag", [False, True])
@pytest.mark.parametrize("testReset", [False, True])
# provide a unique test method name, starting with test_
def test_mrpRotation(show_plots, cmdStateFlag, testReset):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots, cmdStateFlag, testReset)
assert testResults < 1, testMessage
def run(show_plots, cmdStateFlag, testReset):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Test times
updateTime = 0.5 # update process rate update time
totalTestSimTime = 1.5
# Create test thread
testProcessRate = mc.sec2nano(updateTime)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = mrpRotation.mrpRotation()
module.ModelTag = "mrpRotation"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
sigma_RR0 = np.array([0.3, .5, 0.0])
module.mrpSet = sigma_RR0
omega_RR0_R = np.array([0.1, 0.0, 0.0]) * mc.D2R
module.omega_RR0_R = omega_RR0_R
unitTestSupport.writeTeXSnippet("sigma_RR0", str(sigma_RR0), path)
unitTestSupport.writeTeXSnippet("omega_RR0_R", str(omega_RR0_R*mc.R2D) + "deg/sec", path)
if cmdStateFlag:
desiredAtt = messaging.AttStateMsgPayload()
sigma_RR0 = np.array([0.1, 0.0, -0.2])
desiredAtt.state = sigma_RR0
omega_RR0_R = np.array([0.1, 1.0, 0.5]) * mc.D2R
desiredAtt.rate = omega_RR0_R
desInMsg = messaging.AttStateMsg().write(desiredAtt)
module.desiredAttInMsg.subscribeTo(desInMsg)
unitTestSupport.writeTeXSnippet("sigma_RR0Cmd", str(sigma_RR0), path)
unitTestSupport.writeTeXSnippet("omega_RR0_RCmd", str(omega_RR0_R * mc.R2D) + "deg/sec", path)
#
# Reference Frame Message
#
RefStateInData = messaging.AttRefMsgPayload() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateInData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.1, 0.0, 0.0])
RefStateInData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateInData.domega_RN_N = domega_R0N_N
attRefMsg = messaging.AttRefMsg().write(RefStateInData)
module.attRefInMsg.subscribeTo(attRefMsg)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attRefOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
if testReset:
module.Reset(1)
unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime+1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
trueSigma, trueOmega, truedOmega, \
= truth.results(sigma_RR0,omega_RR0_R,RefStateInData,updateTime, cmdStateFlag, testReset)
#
# check sigma_RN
#
testFailCount, testMessages = unitTestSupport.compareArray(trueSigma, dataLog.sigma_RN,
accuracy, "sigma_RN Set",
testFailCount, testMessages)
#
# check omega_RN_N
#
testFailCount, testMessages = unitTestSupport.compareArray(trueOmega, dataLog.omega_RN_N,
accuracy, "omega_RN_N Vector",
testFailCount, testMessages)
#
# check domega_RN_N
#
testFailCount, testMessages = unitTestSupport.compareArray(truedOmega, dataLog.domega_RN_N,
accuracy, "domega_RN_N Vector",
testFailCount, testMessages)
snippentName = "passFail" + str(cmdStateFlag) + str(testReset)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_mrpRotation(
False # show plots
, False # cmdStateFlag
, True # testReset
)