#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import inspect
import os
import numpy as np
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import mrpPD # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.architecture import messaging
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("setExtTorque", [False, True])
def test_mrp_PD_tracking(show_plots, setExtTorque):
r"""
**Validation Test Description**
The unit test for this module is kept as there are no branching code segments to account for different cases.
The spacecraft inertia tensor message is setup, as well as a guidance message. The module is then run for a
few time steps and the control torque output message compared to a known answer. The simulation only variable
is if the known external torque is specified, or if the zero default vector is used.
**Test Parameters**
The unit test verifies that the module output torque message vector matches expected values. The test
method parameters include the following.
:param show_plots: flag to show the test run plots
:param setExtTorque: flag to set the knownTorquePntB_B variable
:return: void
"""
[testResults, testMessage] = mrp_PD_tracking(show_plots, setExtTorque)
assert testResults < 1, testMessage
def mrp_PD_tracking(show_plots, setExtTorque):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_PD_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = mrpPD.mrpPD()
module.ModelTag = "mrpPD"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
module.K = 0.15
module.P = 150.0
if setExtTorque:
module.knownTorquePntB_B = [0.1, 0.2, 0.3]
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = messaging.AttGuidMsgPayload()
guidCmdData.sigma_BR = [0.3, -0.5, 0.7]
guidCmdData.omega_BR_B = [0.010, -0.020, 0.015]
guidCmdData.omega_RN_B = [-0.02, -0.01, 0.005]
guidCmdData.domega_RN_B = [0.0002, 0.0003, 0.0001]
guidInMsg = messaging.AttGuidMsg().write(guidCmdData)
# vehicleConfig FSW Message:
vehicleConfigIn = messaging.VehicleConfigMsgPayload()
vehicleConfigIn.ISCPntB_B = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigIn)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.cmdTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.vehConfigInMsg.subscribeTo(vcInMsg)
module.guidInMsg.subscribeTo(guidInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
trueVector = [findTrueTorques(module, guidCmdData, vehicleConfigIn)]*3
# print trueVector
# compare the module results to the truth values
accuracy = 1e-12
print("accuracy = " + str(accuracy))
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, dataLog.torqueRequestBody, accuracy,
"torqueRequestBody", testFailCount, testMessages)
snippentName = "passFail" + str(setExtTorque)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def findTrueTorques(module, guidCmdData, vehicleConfigOut):
sigma_BR = np.array(guidCmdData.sigma_BR)
omega_BR_B = np.array(guidCmdData.omega_BR_B)
omega_RN_B = np.array(guidCmdData.omega_RN_B)
domega_RN_B = np.array(guidCmdData.domega_RN_B)
I = np.identity(3)
I[0][0] = vehicleConfigOut.ISCPntB_B[0]
I[1][1] = vehicleConfigOut.ISCPntB_B[4]
I[2][2] = vehicleConfigOut.ISCPntB_B[8]
K = module.K
P = module.P
L = np.array(module.knownTorquePntB_B)
# Begin Method
omega_BN_B = omega_BR_B + omega_RN_B
temp1 = np.dot(I, omega_BN_B)
temp2 = domega_RN_B - np.cross(omega_BN_B, omega_RN_B)
Lr = K * sigma_BR + P * omega_BR_B - np.cross(omega_RN_B, temp1) - np.dot(I, temp2)
Lr += L
Lr *= -1.0
return Lr
if __name__ == "__main__":
test_mrp_PD_tracking(False, False)