Source code for test_mrpPD

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import inspect
import os

import numpy as np
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))







from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
from Basilisk.fswAlgorithms import mrpPD  # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.architecture import messaging

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_

[docs] @pytest.mark.parametrize("setExtTorque", [False, True]) def test_mrp_PD_tracking(show_plots, setExtTorque): r""" **Validation Test Description** The unit test for this module is kept as there are no branching code segments to account for different cases. The spacecraft inertia tensor message is setup, as well as a guidance message. The module is then run for a few time steps and the control torque output message compared to a known answer. The simulation only variable is if the known external torque is specified, or if the zero default vector is used. **Test Parameters** The unit test verifies that the module output torque message vector matches expected values. The test method parameters include the following. :param show_plots: flag to show the test run plots :param setExtTorque: flag to set the knownTorquePntB_B variable :return: void """ [testResults, testMessage] = mrp_PD_tracking(show_plots, setExtTorque) assert testResults < 1, testMessage
def mrp_PD_tracking(show_plots, setExtTorque): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_PD_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = mrpPD.mrpPD() module.ModelTag = "mrpPD" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data module.K = 0.15 module.P = 150.0 if setExtTorque: module.knownTorquePntB_B = [0.1, 0.2, 0.3] # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = messaging.AttGuidMsgPayload() guidCmdData.sigma_BR = [0.3, -0.5, 0.7] guidCmdData.omega_BR_B = [0.010, -0.020, 0.015] guidCmdData.omega_RN_B = [-0.02, -0.01, 0.005] guidCmdData.domega_RN_B = [0.0002, 0.0003, 0.0001] guidInMsg = messaging.AttGuidMsg().write(guidCmdData) # vehicleConfig FSW Message: vehicleConfigIn = messaging.VehicleConfigMsgPayload() vehicleConfigIn.ISCPntB_B = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigIn) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.cmdTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.vehConfigInMsg.subscribeTo(vcInMsg) module.guidInMsg.subscribeTo(guidInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() trueVector = [findTrueTorques(module, guidCmdData, vehicleConfigIn)]*3 # print trueVector # compare the module results to the truth values accuracy = 1e-12 print("accuracy = " + str(accuracy)) testFailCount, testMessages = unitTestSupport.compareArray(trueVector, dataLog.torqueRequestBody, accuracy, "torqueRequestBody", testFailCount, testMessages) snippentName = "passFail" + str(setExtTorque) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + module.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def findTrueTorques(module, guidCmdData, vehicleConfigOut): sigma_BR = np.array(guidCmdData.sigma_BR) omega_BR_B = np.array(guidCmdData.omega_BR_B) omega_RN_B = np.array(guidCmdData.omega_RN_B) domega_RN_B = np.array(guidCmdData.domega_RN_B) I = np.identity(3) I[0][0] = vehicleConfigOut.ISCPntB_B[0] I[1][1] = vehicleConfigOut.ISCPntB_B[4] I[2][2] = vehicleConfigOut.ISCPntB_B[8] K = module.K P = module.P L = np.array(module.knownTorquePntB_B) # Begin Method omega_BN_B = omega_BR_B + omega_RN_B temp1 = np.dot(I, omega_BN_B) temp2 = domega_RN_B - np.cross(omega_BN_B, omega_RN_B) Lr = K * sigma_BR + P * omega_BR_B - np.cross(omega_RN_B, temp1) - np.dot(I, temp2) Lr += L Lr *= -1.0 return Lr if __name__ == "__main__": test_mrp_PD_tracking(False, False)