# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: motorVoltageInterface
# Author: João Vaz Carneiro
# Creation Date: February 13, 2021
#
import inspect
import os
import numpy as np
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.simulation import motorVoltageInterface # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.architecture import messaging
def addTimeColumn(time, data):
return np.transpose(np.vstack([[time], np.transpose(data)]))
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("voltage", [
(5.0)
,(-7.5)
,(0.0)
])
# update "module" in this function name to reflect the module name
def test_module(show_plots, voltage):
r"""
**Test Parameters**
Three base voltages are tested where :math:`V_0\in(5.0,-7.5,0.0)`. The input voltages are then setup as
.. math::
{\bf V}=V_0 \begin{bmatrix}
1\\
1\\
1
\end{bmatrix} + \begin{bmatrix}
0.0\\
1.0\\
1.5
\end{bmatrix}
Other inputs to the module are:
.. code-block:: python
:linenos:
testModule.voltage2TorqueGain =[ 1.32, 0.99, 1.31] # [Nm/V] conversion gain
testModule.scaleFactor =[ 1.01, 1.00, 1.02] #[unitless] scale factor
testModule.bias =[0.01, 0.02, 0.04] # [Nm] bias
"""
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots, voltage)
assert testResults < 1, testMessage
def run(show_plots, voltage):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
testModule = motorVoltageInterface.MotorVoltageInterface()
testModule.ModelTag = "motorVoltageInterface"
# set module parameters(s)
testModule.setGains(np.array([1.32, 0.99, 1.31])) # [Nm/V] conversion gain
testModule.setScaleFactors(np.array([1.01, 1.00, 1.02])) # [ul] error scale factor
testModule.setBiases(np.array([0.01, 0.02, 0.04])) # [Nm] Torque bias from converter output
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, testModule)
# Create input message and size it because the regular creator of that message
# is not part of the test.
voltageData = messaging.ArrayMotorVoltageMsgPayload()
voltageData.voltage = [voltage, voltage+1.0, voltage+1.5]
voltageMsg = messaging.ArrayMotorVoltageMsg().write(voltageData)
testModule.motorVoltageInMsg.subscribeTo(voltageMsg)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = testModule.motorTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
moduleOutput = dataLog.motorTorque[:, :3]
# set truth states
voltageTrue = np.array([1.0, 1.0, 1.0])*voltage + np.array([0.0, 1.0, 1.5])
trueVector = [
voltageTrue[0] * testModule.voltage2TorqueGain[0][0]*testModule.scaleFactor[0][0] + testModule.bias[0][0],
voltageTrue[1] * testModule.voltage2TorqueGain[1][0]*testModule.scaleFactor[1][0] + testModule.bias[1][0],
voltageTrue[2] * testModule.voltage2TorqueGain[2][0]*testModule.scaleFactor[2][0] + testModule.bias[2][0]
]
trueVector = np.array([trueVector, trueVector, trueVector])
# compare the module results to the truth values
accuracy = 1e-12
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "Output Vector",
testFailCount, testMessages)
moduleOutput = addTimeColumn(dataLog.times(), moduleOutput)
resultTable = moduleOutput
resultTable[:, 0] = macros.NANO2SEC * resultTable[:, 0]
diff = np.delete(moduleOutput, 0, 1) - trueVector
resultTable = np.insert(resultTable, list(range(2, 2 + len(diff.transpose()))), diff, axis=1)
tableName = "baseVoltage" + str(voltage)
tableHeaders = ["time [s]", "$u_{s,1}$ (Nm)", "Error", "$u_{s,2}$ (Nm)", "Error", "$u_{u,3}$ (Nm)", "Error"]
caption = 'RW motoor torque output for Base Voltaget = ' + str(voltage) + 'V.'
unitTestSupport.writeTableLaTeX(
tableName,
tableHeaders,
caption,
resultTable,
path)
# print out success message if no error were found
snippetName = "passFail" + '{:1.1f}'.format(voltage)
if testFailCount == 0:
colorText = "ForestGreen"
print("PASSED: " + testModule.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = "Red"
passedText = r'\textcolor{' + colorText + '}{' + "FAILED" + '}'
unitTestSupport.writeTeXSnippet(snippetName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_module( # update "module" in function name
False,
5.0, # param1 value
)