Source code for test_magneticFieldWMM


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


#
#   Unit Test Script
#   Module Name:        MagneticFieldWMM
#   Author:             Hanspeter Schaub
#   Creation Date:      June 18, 2019
#

import inspect
import os

import numpy as np
import pytest

from Basilisk.architecture import messaging
from Basilisk.simulation import magneticFieldWMM
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskPath = path.split('src')[0]


# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs] @pytest.mark.parametrize("decimalYear, Height, Lat, Lon, BxTrue, ByTrue, BzTrue", [ (2020, 0, 80, 0, 6414.5, -153.0, 54169.0) , (2020, 0, 0, 120, 39624.3, 109.9, -10932.5) , (2020, 0, -80, 240, 5801.8, 15571.1, -51959.6) , (2020, 100, 80, 0, 6114.2, -191.5, 52011.7) , (2020, 100, 0, 120, 37636.7, 104.9, -10474.8) , (2020, 100, -80, 240, 5613.9, 14614.0, -49483.9) , (2022.5, 0, 80, 0, 6374.2, -6.9, 54274.1) , (2022.5, 0, 0, 120, 39684.7, -42.2, -10809.5) , (2022.5, 0, -80, 240, 5877.0, 15575.7, -51734.1) , (2022.5, 100, 80, 0, 6076.7, -51.7, 52107.6) , (2022.5, 100, 0, 120, 37694.0, -35.3, -10362.0) , (2022.5, 100, -80, 240, 5683.3, 14617.4, -49273.2) ]) @pytest.mark.parametrize("useDefault, useMsg", [ (False, False) , (False, True) , (True, True) ]) @pytest.mark.parametrize("useMinReach", [True, False]) @pytest.mark.parametrize("useMaxReach", [True, False]) @pytest.mark.parametrize("usePlanetEphemeris", [True, False]) @pytest.mark.parametrize("accuracy", [0.1]) # update "module" in this function name to reflect the module name def test_module(show_plots, decimalYear, Height, Lat, Lon, BxTrue, ByTrue, BzTrue, useDefault, useMsg, useMinReach, useMaxReach, usePlanetEphemeris, accuracy): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = run(show_plots, decimalYear, Height, Lat, Lon, BxTrue, ByTrue, BzTrue, useDefault, useMsg, useMinReach, useMaxReach, usePlanetEphemeris, accuracy) assert testResults < 1, testMessage
def run(show_plots, decimalYear, Height, Lat, Lon, BxTrue, ByTrue, BzTrue, useDefault, useMsg, useMinReach, useMaxReach, usePlanetEphemeris, accuracy): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container testModule = magneticFieldWMM.MagneticFieldWMM() testModule.ModelTag = "WMM" testModule.dataPath = bskPath + '/supportData/MagneticField/' if not useDefault: testModule.epochDateFractionalYear = decimalYear if useMsg: epochMsgData = messaging.EpochMsgPayload() dt = unitTestSupport.decimalYearToDateTime(decimalYear) epochMsgData.year = dt.year epochMsgData.month = dt.month epochMsgData.day = dt.day epochMsgData.hours = dt.hour epochMsgData.minutes = dt.minute epochMsgData.seconds = dt.second epMsg = messaging.EpochMsg().write(epochMsgData) testModule.epochInMsg.subscribeTo(epMsg) if not useDefault: testModule.epochDateFractionalYear = decimalYear + 1.0 minReach = -1.0 if useMinReach: minReach = (orbitalMotion.REQ_EARTH+200.)*1000.0 # meters testModule.envMinReach = minReach maxReach = -1.0 if useMaxReach: maxReach = (orbitalMotion.REQ_EARTH-200.)*1000.0 # meters testModule.envMaxReach = maxReach planetPosition = np.array([0.0, 0.0, 0.0]) refPlanetDCM = np.array(((1, 0, 0), (0, 1, 0), (0, 0, 1))) if usePlanetEphemeris: planetStateMsg = messaging.SpicePlanetStateMsgPayload() planetPosition = [1000.0, 2000.0, -1000.0] planetStateMsg.PositionVector = planetPosition refPlanetDCM = np.array(((-1, 0, 0), (0, -1, 0), (0, 0, 1))) planetStateMsg.J20002Pfix = refPlanetDCM.tolist() plMsg = messaging.SpicePlanetStateMsg().write(planetStateMsg) testModule.planetPosInMsg.subscribeTo(plMsg) # add spacecraft to environment model sc0StateMsg = messaging.SCStatesMsg() sc1StateMsg = messaging.SCStatesMsg() testModule.addSpacecraftToModel(sc0StateMsg) testModule.addSpacecraftToModel(sc1StateMsg) unitTestSim.AddModelToTask(unitTaskName, testModule) # define the spacecraft locations r0 = (orbitalMotion.REQ_EARTH + Height) * 1000.0 # meters phi = Lat * macros.D2R long = Lon * macros.D2R r0P = np.array([np.cos(phi)*np.cos(long),np.cos(phi)*np.sin(long),np.sin(phi)])*r0 r0N = np.dot(refPlanetDCM.transpose(),r0P) # create the input messages sc0StateMsgData = messaging.SCStatesMsgPayload() # Create a structure for the input message sc0StateMsgData.r_BN_N = np.array(r0N) + np.array(planetPosition) sc0StateMsg.write(sc0StateMsgData) sc1StateMsgData = messaging.SCStatesMsgPayload() # Create a structure for the input message sc1StateMsgData.r_BN_N = np.array(r0N) + np.array(planetPosition) sc1StateMsg.write(sc1StateMsgData) # Setup logging on the test module output message so that we get all the writes to it dataLog0 = testModule.envOutMsgs[0].recorder() dataLog1 = testModule.envOutMsgs[1].recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog0) unitTestSim.AddModelToTask(unitTaskName, dataLog1) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() unitTestSim.TotalSim.SingleStepProcesses() # This pulls the actual data log from the simulation run and converts to nano-Tesla mag0Data = dataLog0.magField_N*1e9 mag1Data = dataLog1.magField_N*1e9 def wmmInertial(pos_N, Bx, By, Bz, phi, long, refPlanetDCM, minReach, maxReach): radius = np.linalg.norm(pos_N) B_M = np.array([Bx, By, Bz]) M2 = rbk.euler2(phi + np.pi/2.0) M3 = rbk.euler3(-long) PM = np.dot(M3,M2) NM = np.dot(refPlanetDCM.transpose(), PM) magField_N = [np.dot(NM, B_M).tolist()] if radius < minReach: magField_N = [[0.0, 0.0, 0.0]] if radius > maxReach > 0: magField_N = [[0.0, 0.0, 0.0]] return magField_N # compare the module results to the truth values unitTestSupport.writeTeXSnippet("unitTestToleranceValue", str(accuracy), path) # check the exponential atmosphere results # # check spacecraft 0 neutral density results if len(mag0Data) > 0: trueMagField = wmmInertial(r0N, BxTrue, ByTrue, BzTrue, phi, long, refPlanetDCM, minReach, maxReach) testFailCount, testMessages = unitTestSupport.compareArray( trueMagField, mag0Data, accuracy, "SC0 mag vector", testFailCount, testMessages) if len(mag1Data) > 0: testFailCount, testMessages = unitTestSupport.compareArrayRelative( trueMagField, mag1Data, accuracy, "SC1 mag vector", testFailCount, testMessages) # print out success or failure message snippentName = "unitTestPassFail" + str(useDefault) + str(useMinReach) + str(useMaxReach) + str(usePlanetEphemeris) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + testModule.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + testModule.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_module( # update "module" in function name False, # showplots 2020, # decimalYear 0, # Height (km) 80, # latitude (deg) 0, # longitude (deg) 6570.4, # BxTrue (nT) -146.3, # ByTrue (nT) 54606.0, # BzTrue (nT) True, # useDefault False, # useMsg False, # useMinReach False, # useMaxReach False, # usePlanetEphemeris 0.1 # accuracy )