# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: magneticField - Centered Dipole Model
# Author: Hanspeter Schaub
# Creation Date: March 10, 2019
#
import inspect
import os
import numpy as np
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.simulation import magneticFieldCenteredDipole
from Basilisk.architecture import messaging
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simSetPlanetEnvironment
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
# of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("useDefault", [ True, False])
@pytest.mark.parametrize("useMinReach", [ True, False])
@pytest.mark.parametrize("useMaxReach", [ True, False])
@pytest.mark.parametrize("usePlanetEphemeris", [ True, False])
# update "module" in this function name to reflect the module name
def test_module(show_plots, useDefault, useMinReach, useMaxReach, usePlanetEphemeris):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots, useDefault, useMinReach, useMaxReach, usePlanetEphemeris)
assert testResults < 1, testMessage
def run(show_plots, useDefault, useMinReach, useMaxReach, usePlanetEphemeris):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
testModule = magneticFieldCenteredDipole.MagneticFieldCenteredDipole()
testModule.ModelTag = "CenteredDipole"
if useDefault:
refg10 = 0.0 # Tesla
refg11 = 0.0 # Tesla
refh11 = 0.0 # Tesla
refPlanetRadius = 0.0 # meters
else:
simSetPlanetEnvironment.centeredDipoleMagField(testModule, "earth")
refg10 = testModule.g10
refg11 = testModule.g11
refh11 = testModule.h11
refPlanetRadius = testModule.planetRadius
minReach = -1.0
if useMinReach:
minReach = (orbitalMotion.REQ_EARTH+300.)*1000.0 # meters
testModule.envMinReach = minReach
maxReach = -1.0
if useMaxReach:
maxReach = (orbitalMotion.REQ_EARTH+100.) # meters
testModule.envMaxReach = maxReach
planetPosition = np.array([0.0, 0.0, 0.0])
refPlanetDCM = np.array(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
if usePlanetEphemeris:
planetStateMsg = messaging.SpicePlanetStateMsgPayload()
planetPosition = [1000.0, 2000.0, -1000.0]
planetStateMsg.PositionVector = planetPosition
refPlanetDCM = np.array(((-1, 0, 0), (0, -1, 0), (0, 0, 1)))
planetStateMsg.J20002Pfix = refPlanetDCM.tolist()
planetMsg = messaging.SpicePlanetStateMsg().write(planetStateMsg)
testModule.planetPosInMsg.subscribeTo(planetMsg)
# add spacecraft to environment model
sc0StateMsg = messaging.SCStatesMsg()
sc1StateMsg = messaging.SCStatesMsg()
testModule.addSpacecraftToModel(sc0StateMsg)
testModule.addSpacecraftToModel(sc1StateMsg)
unitTestSim.AddModelToTask(unitTaskName, testModule)
# define the spacecraft locations
r0 = 6571 * 1000.0 # meters
r1 = 6600 * 1000.0 # meters
#
# setup orbit and simulation time
oe = orbitalMotion.ClassicElements()
mu = 0.3986004415E+15 # meters^3/s^2
oe.a = r0
oe.e = 0.0
oe.i = 45.0 * macros.D2R
oe.Omega = 30.0 * macros.D2R
oe.omega = 120.0 * macros.D2R
oe.f = 0.0 * macros.D2R
r0N, v0N = orbitalMotion.elem2rv(mu, oe)
oe.a = r1
r1N, v1N = orbitalMotion.elem2rv(mu, oe)
# create the input messages
sc0StateMsgData = messaging.SCStatesMsgPayload() # Create a structure for the input message
sc0StateMsgData.r_BN_N = np.array(r0N) + np.array(planetPosition)
sc0StateMsg.write(sc0StateMsgData)
sc1StateMsgData = messaging.SCStatesMsgPayload() # Create a structure for the input message
sc1StateMsgData.r_BN_N = np.array(r1N) + np.array(planetPosition)
sc1StateMsg.write(sc1StateMsgData)
# Setup logging on the test module output message so that we get all the writes to it
dataLog0 = testModule.envOutMsgs[0].recorder()
dataLog1 = testModule.envOutMsgs[1].recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog0)
unitTestSim.AddModelToTask(unitTaskName, dataLog1)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
mag0Data = dataLog0.magField_N
mag1Data = dataLog1.magField_N
def centeredDipole(pos_N, X, refPlanetRadius, refPlanetDCM, minReach, maxReach):
radius = np.linalg.norm(pos_N)
planetPos_E = refPlanetDCM.dot(pos_N)
rHat_E = planetPos_E/radius
magField_E = (refPlanetRadius/radius)**3 * (3*rHat_E*np.dot(rHat_E, X)-X)
magField_N = [((refPlanetDCM.transpose()).dot(magField_E)).tolist()]*3
if radius < minReach:
magField_N = [[0.0, 0.0, 0.0]]*3
if radius > maxReach and maxReach > 0:
magField_N = [[0.0, 0.0, 0.0]]*3
return magField_N
# compare the module results to the truth values
accuracy = 1e-5
unitTestSupport.writeTeXSnippet("unitTestToleranceValue", str(accuracy), path)
# check the exponential atmosphere results
#
# check spacecraft 0 neutral density results
if len(mag0Data) > 0:
trueMagField = centeredDipole(r0N, np.array([refg11, refh11, refg10]), refPlanetRadius, refPlanetDCM, minReach, maxReach)
testFailCount, testMessages = unitTestSupport.compareArrayRelative(
trueMagField, mag0Data, accuracy, "SC0 mag vector",
testFailCount, testMessages)
if len(mag1Data) > 0:
trueMagField = centeredDipole(r1N, np.array([refg11, refh11, refg10]), refPlanetRadius, refPlanetDCM, minReach, maxReach)
testFailCount, testMessages = unitTestSupport.compareArrayRelative(
trueMagField, mag1Data, accuracy, "SC1 mag vector",
testFailCount, testMessages)
# print out success or failure message
snippentName = "unitTestPassFail" + str(useDefault) + str(useMinReach) + str(useMaxReach) + str(usePlanetEphemeris)
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + testModule.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + testModule.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_module( # update "module" in function name
False, # showplots
False, # useDefault
False, # useMinReach
False, # useMaxReach
True # usePlanetEphemeris
)