Source code for test_inertial3DSpin

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        inertial3DSpin
#   Author:             Hanspeter Schaub
#   Creation Date:      January 6, 2016
#


import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import inertial3DSpin  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros as mc
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

[docs] @pytest.mark.parametrize("function", ["subModuleTestFunction" , "subModuleTestFunction2" ]) def test_stateArchitectureAllTests(show_plots, function): """Module Unit Test""" [testResults, testMessage] = eval(function + '(show_plots)') assert testResults < 1, testMessage
def subModuleTestFunction(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = mc.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = inertial3DSpin.inertial3DSpin() module.ModelTag = "inertial3DSpin" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data omega_RR0_R0 = np.array([1., -1., 0.5]) * mc.D2R module.omega_RR0_R0 = omega_RR0_R0 # # Reference Frame Message # RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message sigma_R0N = np.array([0.1, 0.2, 0.3]) RefStateOutData.sigma_RN = sigma_R0N omega_R0N_N = np.array([0.0, 0.0, 0.0]) RefStateOutData.omega_RN_N = omega_R0N_N domega_R0N_N = np.array([0.0, 0.0, 0.0]) RefStateOutData.domega_RN_N = domega_R0N_N refStateMsg = messaging.AttRefMsg().write(RefStateOutData) # Setup logging on the test module output message so that we get all the writes to it moduleLog = module.attRefOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, moduleLog) # connect messages module.attRefInMsg.subscribeTo(refStateMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(mc.sec2nano(1.5)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # # check sigma_RN # trueVector = [ [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.103643374814, 0.199258235068, 0.299694567381], [0.10728593457, 0.198511279747, 0.299381655572] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleLog.sigma_RN[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" + str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check omega_RN_N # trueVector = [ [0.02142849611, 0.01021197571, -0.011041933756], [0.02142849611, 0.01021197571, -0.011041933756], [0.02142849611, 0.01021197571, -0.011041933756], [0.021428270863, 0.010212299678, -0.011042071256] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleLog.omega_RN_N[i], trueVector[i] , 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" + str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check domega_RN_N # trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0,len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleLog.domega_RN_N[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" + str(moduleLog.times()[i] * mc.NANO2SEC) +"sec\n") # Note that we can continue to step the simulation however we feel like. # Just because we stop and query data does not mean everything has to stop for good unitTestSim.ConfigureStopTime(mc.sec2nano(0.6)) # run an additional 0.6 seconds unitTestSim.ExecuteSimulation() if testFailCount: print(testMessages) else: print("Passed") # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] def subModuleTestFunction2(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = mc.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = inertial3DSpin.inertial3DSpin() module.ModelTag = "inertial3DSpin" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data omega_RR0_R0 = np.array([1., -1., 0.5]) * mc.D2R module.omega_RR0_R0 = omega_RR0_R0 # Create input message and size it because the regular creator of that message # is not part of the test. # # Reference Frame Message # RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message sigma_R0N = np.array([0.1, 0.2, 0.3]) RefStateOutData.sigma_RN = sigma_R0N omega_R0N_N = np.array([0.0, 0.0, 0.0]) RefStateOutData.omega_RN_N = omega_R0N_N domega_R0N_N = np.array([0.0, 0.0, 0.0]) RefStateOutData.domega_RN_N = domega_R0N_N refStateMsg = messaging.AttRefMsg().write(RefStateOutData) # Setup logging on the test module output message so that we get all the writes to it moduleLog = module.attRefOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, moduleLog) # connect messages module.attRefInMsg.subscribeTo(refStateMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(mc.sec2nano(1.5)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) # # check sigma_RN # # set the filtered output truth states trueVector = [ [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.103643374814, 0.199258235068, 0.299694567381], [0.10728593457, 0.198511279747, 0.299381655572] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleLog.sigma_RN[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" + str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check omega_RN_N # # set the filtered output truth states trueVector = [ [0.02142849611, 0.01021197571, -0.011041933756], [0.02142849611, 0.01021197571, -0.011041933756], [0.02142849611, 0.01021197571, -0.011041933756], [0.021428270863, 0.010212299678, -0.011042071256] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleLog.omega_RN_N[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" + str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n") # # check domega_RN_N # # set the filtered output truth states trueVector = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0] ] # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(trueVector)): # check a vector values if not unitTestSupport.isArrayEqual(moduleLog.domega_RN_N[i], trueVector[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" + str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n") # Note that we can continue to step the simulation however we feel like. # Just because we stop and query data does not mean everything has to stop for good unitTestSim.ConfigureStopTime(mc.sec2nano(0.6)) # run an additional 0.6 seconds unitTestSim.ExecuteSimulation() if testFailCount: print(testMessages) else: print("Passed") # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": # all_inertial3DSpin(False) subModuleTestFunction2(False)