#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: inertial3DSpin
# Author: Hanspeter Schaub
# Creation Date: January 6, 2016
#
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import inertial3DSpin # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros as mc
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("function", ["subModuleTestFunction"
, "subModuleTestFunction2"
])
def test_stateArchitectureAllTests(show_plots, function):
"""Module Unit Test"""
[testResults, testMessage] = eval(function + '(show_plots)')
assert testResults < 1, testMessage
def subModuleTestFunction(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = mc.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = inertial3DSpin.inertial3DSpin()
module.ModelTag = "inertial3DSpin"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
omega_RR0_R0 = np.array([1., -1., 0.5]) * mc.D2R
module.omega_RR0_R0 = omega_RR0_R0
#
# Reference Frame Message
#
RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateOutData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.domega_RN_N = domega_R0N_N
refStateMsg = messaging.AttRefMsg().write(RefStateOutData)
# Setup logging on the test module output message so that we get all the writes to it
moduleLog = module.attRefOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, moduleLog)
# connect messages
module.attRefInMsg.subscribeTo(refStateMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(1.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
#
# check sigma_RN
#
trueVector = [
[0.1, 0.2, 0.3],
[0.1, 0.2, 0.3],
[0.103643374814, 0.199258235068, 0.299694567381],
[0.10728593457, 0.198511279747, 0.299381655572]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0, len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleLog.sigma_RN[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n")
#
# check omega_RN_N
#
trueVector = [
[0.02142849611, 0.01021197571, -0.011041933756],
[0.02142849611, 0.01021197571, -0.011041933756],
[0.02142849611, 0.01021197571, -0.011041933756],
[0.021428270863, 0.010212299678, -0.011042071256]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleLog.omega_RN_N[i], trueVector[i] , 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" +
str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n")
#
# check domega_RN_N
#
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleLog.domega_RN_N[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
str(moduleLog.times()[i] * mc.NANO2SEC) +"sec\n")
# Note that we can continue to step the simulation however we feel like.
# Just because we stop and query data does not mean everything has to stop for good
unitTestSim.ConfigureStopTime(mc.sec2nano(0.6)) # run an additional 0.6 seconds
unitTestSim.ExecuteSimulation()
if testFailCount:
print(testMessages)
else:
print("Passed")
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
def subModuleTestFunction2(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = mc.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = inertial3DSpin.inertial3DSpin()
module.ModelTag = "inertial3DSpin"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
omega_RR0_R0 = np.array([1., -1., 0.5]) * mc.D2R
module.omega_RR0_R0 = omega_RR0_R0
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Reference Frame Message
#
RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateOutData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.domega_RN_N = domega_R0N_N
refStateMsg = messaging.AttRefMsg().write(RefStateOutData)
# Setup logging on the test module output message so that we get all the writes to it
moduleLog = module.attRefOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, moduleLog)
# connect messages
module.attRefInMsg.subscribeTo(refStateMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(1.5)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
#
# check sigma_RN
#
# set the filtered output truth states
trueVector = [
[0.1, 0.2, 0.3],
[0.1, 0.2, 0.3],
[0.103643374814, 0.199258235068, 0.299694567381],
[0.10728593457, 0.198511279747, 0.299381655572]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0, len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleLog.sigma_RN[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
str(moduleLog.times()[i] * mc.NANO2SEC) +
"sec\n")
#
# check omega_RN_N
#
# set the filtered output truth states
trueVector = [
[0.02142849611, 0.01021197571, -0.011041933756],
[0.02142849611, 0.01021197571, -0.011041933756],
[0.02142849611, 0.01021197571, -0.011041933756],
[0.021428270863, 0.010212299678, -0.011042071256]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0, len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleLog.omega_RN_N[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" +
str(moduleLog.times()[i] * mc.NANO2SEC) +
"sec\n")
#
# check domega_RN_N
#
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0, len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleLog.domega_RN_N[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
str(moduleLog.times()[i] * mc.NANO2SEC) +
"sec\n")
# Note that we can continue to step the simulation however we feel like.
# Just because we stop and query data does not mean everything has to stop for good
unitTestSim.ConfigureStopTime(mc.sec2nano(0.6)) # run an additional 0.6 seconds
unitTestSim.ExecuteSimulation()
if testFailCount:
print(testMessages)
else:
print("Passed")
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
# all_inertial3DSpin(False)
subModuleTestFunction2(False)