#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: inertial3D
# Author: Mar Cols
# Creation Date: January 6, 2015
#
import inspect
import os
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import inertial3D # import the module that is to be tested
from Basilisk.utilities import macros
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
def test_inertial3D(show_plots):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = subModuleTestFunction(show_plots)
assert testResults < 1, testMessage
def subModuleTestFunction(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = inertial3D.inertial3D()
module.ModelTag = "inertial3D"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
vector = [0.1, 0.2, 0.3]
module.sigma_R0N = vector
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attRefOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(1.)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
#
# check sigma_BR
#
moduleOutput = dataLog.sigma_RN
# set the filtered output truth states
trueVector = [
[0.1, 0.2, 0.3],
[0.1, 0.2, 0.3],
[0.1, 0.2, 0.3]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
str(moduleOutput[i,0]*macros.NANO2SEC) +
"sec\n")
#
# check omega_RN_N
#
moduleOutput = dataLog.omega_RN_N
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
accuracy = 1e-12
unitTestSupport.writeTeXSnippet("toleranceValue", str(accuracy), path)
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" +
str(moduleOutput[i,0]*macros.NANO2SEC) +
"sec\n")
#
# check domega_RN_B
#
moduleOutput = dataLog.domega_RN_N
# set the filtered output truth states
trueVector = [
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
str(moduleOutput[i,0]*macros.NANO2SEC) +
"sec\n")
snippentName = "passFail"
if testFailCount == 0:
colorText = 'ForestGreen'
print("PASSED: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
else:
colorText = 'Red'
print("Failed: " + module.ModelTag)
passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_inertial3D(False)