# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import inspect
import os
import numpy
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('simulation')
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraft
from Basilisk.simulation import hingedRigidBodyStateEffector
from Basilisk.utilities import macros
from Basilisk.utilities import pythonVariableLogger
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import extForceTorque
from Basilisk.simulation import spacecraftSystem
from Basilisk.architecture import messaging
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("function", ["hingedRigidBodyGravity", "hingedRigidBodyNoGravity"
, "hingedRigidBodyNoGravityDamping", "hingedRigidBodyThetaSS"
, "hingedRigidBodyFrequencyAmp"
, "hingedRigidBodyLagrangVsBasilisk"
])
def test_hingedRigidBody(show_plots, function):
"""Module Unit Test"""
[testResults, testMessage] = eval(function + '(show_plots)')
assert testResults < 1, testMessage
[docs]
@pytest.mark.parametrize("useScPlus", [True, False])
def test_hingedRigidBodyMotorTorque(show_plots, useScPlus):
"""Module Unit Test"""
[testResults, testMessage] = hingedRigidBodyMotorTorque(show_plots, useScPlus)
assert testResults < 1, testMessage
def hingedRigidBodyGravity(show_plots):
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Create two hinged rigid bodies
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 100.0
unitTestSim.panel1.c = 0.0
unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0
unitTestSim.panel1.thetaDotInit = 0.0
unitTestSim.panel1.ModelTag = "Panel1"
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 100.0
unitTestSim.panel2.c = 0.0
unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
unitTestSim.panel2.ModelTag = "Panel2"
# Add panels to spaceCraft
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2)
# Define mass properties of the rigid part of the spacecraft
scObject.primaryCentralSpacecraft.hub.mHub = 750.0
scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [1.0]]
scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
# Add Earth gravity to the sim
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.planetName = "earth_planet_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
scObject.primaryCentralSpacecraft.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody])
# Log the spacecraft state message
datLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, datLog)
# Add energy and momentum variables to log
panel1Log = unitTestSim.panel1.logger("forceOnBody_B")
panel2Log = unitTestSim.panel2.logger("forceOnBody_B")
scLog = pythonVariableLogger.PythonVariableLogger({
"totOrbEnergy": lambda _: scObject.primaryCentralSpacecraft.totOrbEnergy,
"totOrbAngMomPntN_N": lambda _: scObject.primaryCentralSpacecraft.totOrbAngMomPntN_N,
"totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N,
"totRotEnergy": lambda _: scObject.primaryCentralSpacecraft.totRotEnergy,
})
unitTestSim.AddModelToTask(unitTaskName, panel1Log)
unitTestSim.AddModelToTask(unitTaskName, panel2Log)
unitTestSim.AddModelToTask(unitTaskName, scLog)
# Initialize the simulation
unitTestSim.InitializeSimulation()
stopTime = 2.5
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
sigmaOut = datLog.sigma_BN
forcePanel1 = unitTestSupport.addTimeColumn(panel1Log.times(), panel1Log.forceOnBody_B)
forcePanel2 = unitTestSupport.addTimeColumn(panel2Log.times(), panel2Log.forceOnBody_B)
orbEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbEnergy)
orbAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbAngMomPntN_N)
rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N)
rotEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotEnergy)
dataSigma = [sigmaOut[-1]]
trueSigma = [[0.06170318243240492, -0.07089090074412899, 0.06409500412692531]]
initialOrbAngMom_N = [[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]]
finalOrbAngMom = [orbAngMom_N[-1]]
initialRotAngMom_N = [[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]]
finalRotAngMom = [rotAngMom_N[-1]]
initialOrbEnergy = [[orbEnergy[0,1]]]
finalOrbEnergy = [orbEnergy[-1]]
initialRotEnergy = [[rotEnergy[0,1]]]
finalRotEnergy = [rotEnergy[-1]]
plt.close("all")
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInOrbitalAngularMomentumGravity"
PlotTitle = "Change in Orbital Angular Momentum with Gravity"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInOrbitalEnergyGravity"
PlotTitle = "Change in Orbital Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInRotationalAngularMomentumGravity"
PlotTitle = "Change In Rotational Angular Momentum with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInRotationalEnergyGravity"
PlotTitle = "Change In Rotational Energy with Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(forcePanel1[:,0]*1e-9, forcePanel1[:,1], forcePanel1[:,0]*1e-9, forcePanel1[:,2], forcePanel1[:,0]*1e-9, forcePanel1[:,3])
plt.xlabel('time (s)')
plt.ylabel('Force about Point B')
plt.figure()
plt.clf()
plt.plot(forcePanel2[:,0]*1e-9, forcePanel2[:,1], forcePanel2[:,0]*1e-9, forcePanel2[:,2], forcePanel2[:,0]*1e-9, forcePanel2[:,3])
plt.xlabel('time (s)')
plt.ylabel('Force about Point B')
if show_plots:
plt.show()
plt.close("all")
accuracy = 1e-10
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(dataSigma[i],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity attitude test")
finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column
finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column
finalRotEnergy = numpy.delete(finalRotEnergy, 0, axis=1) # remove time column
finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity rotational energy unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Hinged Rigid Body gravity integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def hingedRigidBodyNoGravity(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 100.0
unitTestSim.panel1.c = 0.0
unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0
unitTestSim.panel1.thetaDotInit = 0.0
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 100.0
unitTestSim.panel2.c = 0.0
unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
# Add panels to spaceCraft
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2)
# Define mass properties of the rigid part of the spacecraft
scObject.primaryCentralSpacecraft.hub.mHub = 750.0
scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [1.0]]
scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.1], [-0.4], [0.3]]
scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[-0.2], [0.5], [0.1]]
scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
scLog = pythonVariableLogger.PythonVariableLogger({
"totOrbEnergy": lambda _: scObject.primaryCentralSpacecraft.totOrbEnergy,
"totOrbAngMomPntN_N": lambda _: scObject.primaryCentralSpacecraft.totOrbAngMomPntN_N,
"totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N,
"totRotEnergy": lambda _: scObject.primaryCentralSpacecraft.totRotEnergy,
})
unitTestSim.AddModelToTask(unitTaskName, scLog)
unitTestSim.InitializeSimulation()
stopTime = 2.5
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
sigmaOut = dataLog.sigma_BN
rOut_BN_N = dataLog.r_BN_N
vOut_CN_N = dataLog.v_CN_N
orbEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbEnergy)
orbAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbAngMomPntN_N)
rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N)
rotEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotEnergy)
# Get the last sigma and position
dataSigma = [sigmaOut[-1]]
dataPos = [rOut_BN_N[-1]]
truePos = [[-0.15832794740648992, 1.122481716747217, -0.37975995949382907]]
trueSigma = [[0.06170318243240492, -0.07089090074412899, 0.06409500412692531]]
initialOrbAngMom_N = [[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]]
finalOrbAngMom = [orbAngMom_N[-1]]
initialRotAngMom_N = [[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]]
finalRotAngMom = [rotAngMom_N[-1]]
initialOrbEnergy = [[orbEnergy[0,1]]]
finalOrbEnergy = [orbEnergy[-1]]
initialRotEnergy = [[rotEnergy[0,1]]]
finalRotEnergy = [rotEnergy[-1]]
plt.close("all")
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInOrbitalAngularMomentumNoGravity"
PlotTitle = "Change in Orbital Angular Momentum No Gravity"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInOrbitalEnergyNoGravity"
PlotTitle = "Change in Orbital Energy No Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInRotationalAngularMomentumNoGravity"
PlotTitle = "Change In Rotational Angular Momentum No Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInRotationalEnergyNoGravity"
PlotTitle = "Change In Rotational Energy No Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(dataLog.times()*1e-9, vOut_CN_N[:,0], dataLog.times()*1e-9, vOut_CN_N[:,1], dataLog.times()*1e-9, vOut_CN_N[:,2])
plt.xlabel('time (s)')
plt.ylabel('m/s')
PlotName = "VelocityOfCenterOfMassNoGravity"
PlotTitle = "Velocity Of Center Of Mass No Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(dataLog.times()*1e-9, (vOut_CN_N[:,0] - vOut_CN_N[:,0])/vOut_CN_N[:,0], dataLog.times()*1e-9,
(vOut_CN_N[:,1] - vOut_CN_N[:,1])/vOut_CN_N[:,1], dataLog.times()*1e-9,
(vOut_CN_N[:,2] - vOut_CN_N[:,2])/vOut_CN_N[:,2])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInVelocityOfCenterOfMassNoGravity"
PlotTitle = "Change In Velocity Of Center Of Mass No Gravity"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close("all")
accuracy = 1e-10
for i in range(0,len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(dataPos[i],truePos[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed position test")
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(dataSigma[i],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed attitude test")
finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column
finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column
finalRotEnergy = numpy.delete(finalRotEnergy, 0, axis=1) # remove time column
finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed rotational angular momentum unit test")
for i in range(0,len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed rotational energy unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Hinged Rigid Body integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def hingedRigidBodyNoGravityDamping(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.001) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 100.0
unitTestSim.panel1.c = 6.0
unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0
unitTestSim.panel1.thetaDotInit = 0.0
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 100.0
unitTestSim.panel2.c = 7.0
unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
# Add panels to spaceCraft
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2)
# Define mass properties of the rigid part of the spacecraft
scObject.primaryCentralSpacecraft.hub.mHub = 750.0
scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [1.0]]
scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.1], [-0.4], [0.3]]
scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[-0.2], [0.5], [0.1]]
scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
scLog = pythonVariableLogger.PythonVariableLogger({
"totOrbEnergy": lambda _: scObject.primaryCentralSpacecraft.totOrbEnergy,
"totOrbAngMomPntN_N": lambda _: scObject.primaryCentralSpacecraft.totOrbAngMomPntN_N,
"totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N,
})
unitTestSim.AddModelToTask(unitTaskName, scLog)
unitTestSim.InitializeSimulation()
stopTime = 2.5
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
vOut_CN_N = dataLog.v_CN_N
orbEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbEnergy)
orbAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbAngMomPntN_N)
rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N)
initialOrbAngMom_N = [[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]]
finalOrbAngMom = [orbAngMom_N[-1]]
initialRotAngMom_N = [[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]]
finalRotAngMom = [rotAngMom_N[-1]]
initialOrbEnergy = [[orbEnergy[0,1]]]
finalOrbEnergy = [orbEnergy[-1]]
plt.close("all")
plt.figure()
plt.clf()
plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInOrbitalAngularMomentumNoGravityDamping"
PlotTitle = "Change in Orbital Angular Momentum No Gravity with Damping"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInOrbitalEnergyNoGravityDamping"
PlotTitle = "Change in Orbital Energy No Gravity with Damping"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInRotationalAngularMomentumNoGravityDamping"
PlotTitle = "Change In Rotational Angular Momentum No Gravity with Damping"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(dataLog.times()*1e-9, vOut_CN_N[:, 0],
dataLog.times()*1e-9, vOut_CN_N[:, 1],
dataLog.times()*1e-9, vOut_CN_N[:, 2])
plt.xlabel('time (s)')
plt.ylabel('m/s')
PlotName = "VelocityOfCenterOfMassNoGravityDamping"
PlotTitle = "Velocity Of Center Of Mass No Gravity with Damping"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(dataLog.times()*1e-9, (vOut_CN_N[:, 0] - vOut_CN_N[:, 0])/vOut_CN_N[:, 0],
dataLog.times()*1e-9, (vOut_CN_N[:, 1] - vOut_CN_N[:, 1])/vOut_CN_N[:, 1],
dataLog.times()*1e-9, (vOut_CN_N[:, 2] - vOut_CN_N[:, 2])/vOut_CN_N[:, 2])
plt.xlabel('time (s)')
plt.ylabel('Relative Difference')
PlotName = "ChangeInVelocityOfCenterOfMassNoGravityDamping"
PlotTitle = "Change In Velocity Of Center Of Mass No Gravity with Damping"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close("all")
finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column
finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column
finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column
accuracy = 1e-10
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test with damping failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test with damping failed rotational angular momentum unit test")
for i in range(0,len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test with damping failed orbital energy unit test")
if testFailCount == 0:
print("PASSED: " + " Hinged Rigid Body integrated test with damping")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def hingedRigidBodyThetaSS(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
stepSize = 0.1
testProcessRate = macros.sec2nano(stepSize) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 100.0
unitTestSim.panel1.c = 75
unitTestSim.panel1.r_HB_B = [[0.5], [1.0], [0.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
unitTestSim.panel1.thetaInit = 0.0
unitTestSim.panel1.thetaDotInit = 0.0
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 100.0
unitTestSim.panel2.c = 75
unitTestSim.panel2.r_HB_B = [[-0.5], [1.0], [0.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]]
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
# Add panels to spaceCraft
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[0], [0], [0]]
extFTObject.extForce_B = [[0], [1], [0]]
scObject.primaryCentralSpacecraft.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
# Define mass properties of the rigid part of the spacecraft
scObject.primaryCentralSpacecraft.hub.mHub = 750.0
scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
stateLog = pythonVariableLogger.PythonVariableLogger({
"theta1": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta1').getState(),
"theta2": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta2').getState(),
})
unitTestSim.AddModelToTask(unitTaskName, stateLog)
unitTestSim.InitializeSimulation()
stopTime = 60.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
theta1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta1)
theta2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta2)
# Developing the lagrangian result
# Define initial values
spacecraft = spacecraftClass()
spacecraft.hub.mass = scObject.primaryCentralSpacecraft.hub.mHub
spacecraft.hub.Inertia = scObject.primaryCentralSpacecraft.hub.IHubPntBc_B[2][2]
# Define variables for panel1
spacecraft.panel1.mass = unitTestSim.panel1.mass
spacecraft.panel1.Inertia = unitTestSim.panel1.IPntS_S[1][1]
spacecraft.panel1.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel1.r_HB_B))
spacecraft.panel1.beta = numpy.arctan2(unitTestSim.panel1.r_HB_B[1][0],unitTestSim.panel1.r_HB_B[0][0])
spacecraft.panel1.thetaH = 0.0
spacecraft.panel1.d = unitTestSim.panel1.d
spacecraft.panel1.k = unitTestSim.panel1.k
spacecraft.panel1.c = unitTestSim.panel1.c
# Define variables for panel2
spacecraft.panel2.mass = unitTestSim.panel2.mass
spacecraft.panel2.Inertia = unitTestSim.panel2.IPntS_S[1][1]
spacecraft.panel2.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel2.r_HB_B))
spacecraft.panel2.beta = numpy.arctan2(unitTestSim.panel2.r_HB_B[1][0],unitTestSim.panel2.r_HB_B[0][0])
spacecraft.panel2.thetaH = numpy.pi
spacecraft.panel2.d = unitTestSim.panel2.d
spacecraft.panel2.k = unitTestSim.panel2.k
spacecraft.panel2.c = unitTestSim.panel2.c
# Define body force and torque
spacecraft.xThrust_B = 0.0
spacecraft.yThrust_B = extFTObject.extForce_B[1][0]
spacecraft.Torque = 0.0
# Define initial conditions of the sim
time = numpy.arange(0.0,stopTime + stepSize,stepSize).flatten()
x0 = numpy.zeros(10)
x0[3] = unitTestSim.panel1.thetaInit
x0[4] = -unitTestSim.panel2.thetaInit
X = numpy.zeros((len(x0),len(time)))
X[:,0] = x0
for j in range (1,(len(time))):
X[:, j] = rk4(planarFlexFunction, X[:, j-1], stepSize, time[j-1], spacecraft)
# Find steady state value
variablesIn = boxAndWingParameters()
variablesIn.k = spacecraft.panel1.k
variablesIn.d = spacecraft.panel1.d
variablesIn.F = spacecraft.yThrust_B
variablesIn.mSC = spacecraft.hub.mass + spacecraft.panel1.mass + spacecraft.panel2.mass
variablesIn.mSP = spacecraft.panel1.mass
thetaSSGuess = -0.01
tolerance = 1e-10
thetaSS = newtonRapshon(boxAndWingsFandFPrime,thetaSSGuess,tolerance,variablesIn)
plt.close("all")
plt.figure()
plt.clf()
plt.plot(time, X[3,:],'-b',label = "Lagrangian")
plt.plot(theta1Out[:,0]*1e-9, theta1Out[:,1],'-r',label = "Basilisk")
plt.plot(theta1Out[-1,0]*1e-9, thetaSS,'ok',label = "BOE Calculation")
plt.xlabel('time (s)')
plt.ylabel('theta 1 (rad)')
plt.legend(loc ='upper right',numpoints = 1)
PlotName = "BOECalculationForSteadyStateTheta1DeflectionVsSimulation"
PlotTitle = "BOE Calculation for Steady State Theta 1 Deflection vs Simulation"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(time, -X[4,:],'-b',label = "Lagrangian")
plt.plot(theta2Out[:,0]*1e-9, theta2Out[:,1],'-r',label = "Basilisk")
plt.plot(theta2Out[-1,0]*1e-9, thetaSS,'ok',label = "BOE Calculation")
plt.xlabel('time (s)')
plt.ylabel('theta 2 (rad)')
plt.legend(loc ='upper right',numpoints = 1)
PlotName = "BOECalculationForSteadyStateTheta2DeflectionVsSimulation"
PlotTitle = "BOE Calculation for Steady State Theta 2 Deflection vs Simulation"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close("all")
accuracy = 1e-6
if abs(theta1Out[-1,1] - thetaSS) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated steady state test failed theta 1 comparison ")
if abs(theta2Out[-1,1] - thetaSS) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated steady state test failed theta 2 comparison ")
if testFailCount == 0:
print("PASSED: " + " Hinged Rigid Body steady state Integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def hingedRigidBodyFrequencyAmp(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
stepSize = 0.1
testProcessRate = macros.sec2nano(stepSize) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 300.0
unitTestSim.panel1.c = 0.0
unitTestSim.panel1.r_HB_B = [[0.5], [1.0], [0.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
unitTestSim.panel1.thetaInit = 0.0
unitTestSim.panel1.thetaDotInit = 0.0
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 300.0
unitTestSim.panel2.c = 0.0
unitTestSim.panel2.r_HB_B = [[-0.5], [1.0], [0.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]]
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
# Add panels to spaceCraft
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extTorquePntB_B = [[0], [0], [0]]
force = 1
extFTObject.extForce_B = [[0], [force], [0]]
scObject.primaryCentralSpacecraft.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
# Define mass properties of the rigid part of the spacecraft
scObject.primaryCentralSpacecraft.hub.mHub = 750.0
scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
stateLog = pythonVariableLogger.PythonVariableLogger({
"theta1": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta1').getState(),
"theta2": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta2').getState(),
})
unitTestSim.AddModelToTask(unitTaskName, stateLog)
unitTestSim.InitializeSimulation()
stopTime = 58
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime/2))
unitTestSim.ExecuteSimulation()
extFTObject.extTorquePntB_B = [0.0, 0.0, 0.0]
extFTObject.extForce_B = [0.0, 0.0, 0.0]
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
rOut_BN_N = dataLog.r_BN_N
sigmaOut_BN = dataLog.sigma_BN
thetaOut = 4.0*numpy.arctan(sigmaOut_BN[:,2])
theta1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta1)
theta2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta2)
# Developing the lagrangian result
# Define initial values
spacecraft = spacecraftClass()
spacecraft.hub.mass = scObject.primaryCentralSpacecraft.hub.mHub
spacecraft.hub.Inertia = scObject.primaryCentralSpacecraft.hub.IHubPntBc_B[2][2]
# Define variables for panel1
spacecraft.panel1.mass = unitTestSim.panel1.mass
spacecraft.panel1.Inertia = unitTestSim.panel1.IPntS_S[1][1]
spacecraft.panel1.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel1.r_HB_B))
spacecraft.panel1.beta = numpy.arctan2(unitTestSim.panel1.r_HB_B[1][0],unitTestSim.panel1.r_HB_B[0][0])
spacecraft.panel1.thetaH = 0.0
spacecraft.panel1.d = unitTestSim.panel1.d
spacecraft.panel1.k = unitTestSim.panel1.k
spacecraft.panel1.c = unitTestSim.panel1.c
# Define variables for panel2
spacecraft.panel2.mass = unitTestSim.panel2.mass
spacecraft.panel2.Inertia = unitTestSim.panel2.IPntS_S[1][1]
spacecraft.panel2.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel2.r_HB_B))
spacecraft.panel2.beta = numpy.arctan2(unitTestSim.panel2.r_HB_B[1][0],unitTestSim.panel2.r_HB_B[0][0])
spacecraft.panel2.thetaH = numpy.pi
spacecraft.panel2.d = unitTestSim.panel2.d
spacecraft.panel2.k = unitTestSim.panel2.k
spacecraft.panel2.c = unitTestSim.panel2.c
# Define body force and torque
# Define initial conditions of the sim
check = 0
time = numpy.arange(0.0,stopTime + stepSize,stepSize).flatten()
x0 = numpy.zeros(10)
x0[3] = unitTestSim.panel1.thetaInit
x0[4] = -unitTestSim.panel2.thetaInit
X = numpy.zeros((len(x0),len(time)))
X[:,0] = x0
for j in range (1,(len(time))):
if time[j-1] < stopTime/2:
spacecraft.xThrust_B = 0.0
spacecraft.yThrust_B = force
spacecraft.Torque = 0.0
else:
spacecraft.xThrust_B = 0.0
spacecraft.yThrust_B = 0.0
spacecraft.Torque = 0.0
X[:, j] = rk4(planarFlexFunction, X[:, j-1], stepSize, time[j-1], spacecraft)
if check == 0 and X[3,j] < X[3,j-1]:
check = 1
if check ==1 and X[3,j] > X[3,j-1]:
check = 2
if check == 2 and X[3,j] < X[3,j-1]:
check = 3
indexFirstPeak = j-1
if check == 3 and X[3,j] > X[3,j-1]:
check = 4
if check==4 and X[3,j] < X[3,j-1]:
check = 5
indexSecondPeak = j-1
if check == 5 and X[3,j] > X[3,j-1]:
check = 6
if check==6 and X[3,j] < X[3,j-1]:
check = 7
indexThirdPeak = j-1
# Find the period
T1 = time[indexSecondPeak] - time[indexFirstPeak]
T2 = time[indexThirdPeak] - time[indexSecondPeak]
freqHz = 1/((T1 + T2)/2)
matrixM = numpy.zeros([6,6])
matrixM[0,0] = 1.0
matrixM[1,1] = spacecraft.hub.mass + spacecraft.panel1.mass + spacecraft.panel2.mass
matrixM[2,2] = 1.0
matrixM[3,3] = spacecraft.panel1.Inertia + spacecraft.panel1.mass*spacecraft.panel1.d**2
matrixM[4,4] = 1.0
matrixM[5,5] = spacecraft.panel2.Inertia + spacecraft.panel2.mass*spacecraft.panel2.d**2
# Define off diagonal terms
matrixM[1,3] = spacecraft.panel1.mass*spacecraft.panel1.d
matrixM[1,5] = spacecraft.panel2.mass*spacecraft.panel2.d
matrixM[3,1] = spacecraft.panel1.mass*spacecraft.panel1.d
matrixM[5,1] = spacecraft.panel2.mass*spacecraft.panel2.d
# Define A matrix
matrixA = numpy.zeros([6,6])
matrixA[0,1] = 1.0
matrixA[2,3] = 1.0
matrixA[4,5] = 1.0
matrixA[3,2] = -spacecraft.panel1.k
matrixA[3,3] = -spacecraft.panel1.c
matrixA[5,4] = -spacecraft.panel2.k
matrixA[5,5] = -spacecraft.panel2.c
# Define Atilde
matrixAtilde = numpy.dot(numpy.linalg.inv(matrixM),matrixA)
eigenValues = numpy.linalg.eigvals(matrixAtilde)
omegaAnalytical = numpy.imag(eigenValues[2])
omegaAnalyticalHz = omegaAnalytical/(2*numpy.pi)
diffFreq = (freqHz-omegaAnalyticalHz)/omegaAnalyticalHz
# Find thetaMax - the max deflection while the force is being applied
variablesIn = boxAndWingParameters()
variablesIn.k = spacecraft.panel1.k
variablesIn.d = spacecraft.panel1.d
variablesIn.F = force
variablesIn.mSC = spacecraft.hub.mass + spacecraft.panel1.mass + spacecraft.panel2.mass
variablesIn.mSP = spacecraft.panel1.mass
thetaSSGuess = -0.01
tolerance = 1e-14
thetaSS = newtonRapshon(boxAndWingsFandFPrime,thetaSSGuess,tolerance,variablesIn)
thetaMax = 2*thetaSS
# Pull thetaMax from the sim
thetaMaxSim = min(X[3,:])
diffThetaMax = abs((thetaMax-thetaMaxSim)/thetaMax)
# Find energy to find thetaMax2 - the max deflection while the force is not being applied
massTotal = spacecraft.hub.mass + 2.0*spacecraft.panel1.mass
yHubDotOff = X[6, int(stopTime/2/stepSize)]
theta1Off = X[3, int(stopTime/2/stepSize)]
theta1OffDot = X[8, int(stopTime/2/stepSize)]
Rsp1DotOff = numpy.array([-spacecraft.panel1.d*theta1OffDot*numpy.sin(theta1Off), yHubDotOff + spacecraft.panel1.d*theta1OffDot*numpy.cos(theta1Off)])
vYCMOff = 1.0/massTotal*(spacecraft.hub.mass*yHubDotOff + 2*spacecraft.panel1.mass*Rsp1DotOff[1])
EnergyOff = 0.5*spacecraft.hub.mass*yHubDotOff**2 + 2*(0.5*spacecraft.panel1.mass*numpy.dot(Rsp1DotOff,Rsp1DotOff) + 0.5*spacecraft.panel1.Inertia*theta1OffDot**2 + 0.5*spacecraft.panel1.k*theta1Off**2)
EnergyFinalWithoutSpring = 0.5*massTotal*vYCMOff**2
EnergyInSpringFinal = EnergyOff - EnergyFinalWithoutSpring
thetaMax2 = numpy.sqrt(EnergyInSpringFinal/spacecraft.panel1.k)
# Pull thetaMax2 from the sim
thetaMax2Sim = max(X[3,:])
diffTheta2Max = abs((thetaMax2-thetaMax2Sim)/thetaMax2)
plt.figure()
plt.clf()
plt.plot(time, X[3,:],'-b',label = "Lagrangian")
plt.plot(theta1Out[:,0]*1e-9, theta1Out[:,1],'-r',label = "Basilisk")
plt.plot([theta1Out[0,0]*1e-9, theta1Out[-1,0]*1e-9], [2*thetaSS, 2*thetaSS],'-g',label = "Theta Max")
plt.plot([theta1Out[0,0]*1e-9, theta1Out[-1,0]*1e-9], [thetaMax2, thetaMax2],'-k',label = "Theta Max 2")
plt.xlabel('time (s)')
plt.ylabel('theta (rad)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "MaxThetaWhileForcing"
PlotTitle = "Max Theta While Forcing"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
# Write Results to tex snippet
snippetName = "FrequencyResults"
texSnippet = str(omegaAnalyticalHz) + " & " + str(freqHz) + " & " + str(diffFreq)
unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path)
snippetName = "Theta1Results"
texSnippet = str(thetaMax) + " & " + str(thetaMaxSim) + " & " + str(diffThetaMax)
unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path)
snippetName = "Theta2Results"
texSnippet = str(thetaMax2) + " & " + str(thetaMax2Sim) + " & " + str(diffTheta2Max)
unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path)
if show_plots:
plt.show()
plt.close("all")
accuracy = 5e-3
if abs((freqHz - omegaAnalyticalHz)/omegaAnalyticalHz) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated theta max test failed frequency comparison ")
if abs((thetaMax - thetaMaxSim)/thetaMax) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated theta max test failed max comparison ")
if abs((thetaMax2 - thetaMax2Sim)/thetaMax2) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated theta max test failed max 2 comparison ")
if testFailCount == 0:
print("PASSED: " + "Hinged Rigid Body Frequency and Amplitude Integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def hingedRigidBodyMotorTorque(show_plots, useScPlus):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
if useScPlus:
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
else:
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
scObject.primaryCentralSpacecraft.spacecraftName = scObject.ModelTag
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 0.0
unitTestSim.panel1.c = 0.0
unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel1.thetaInit = 0 * numpy.pi / 180.0
unitTestSim.panel1.thetaDotInit = 0.0
unitTestSim.panel1.ModelTag = "panel1"
# set a fixed motor torque message
motorMsgData = messaging.ArrayMotorTorqueMsgPayload()
motorMsgData.motorTorque = [2.0]
motorMsg = messaging.ArrayMotorTorqueMsg().write(motorMsgData)
unitTestSim.panel1.motorTorqueInMsg.subscribeTo(motorMsg)
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 0.0
unitTestSim.panel2.c = 0.0
unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
unitTestSim.panel2.thetaInit = 0.0 * macros.D2R
unitTestSim.panel2.thetaDotInit = 0.0
unitTestSim.panel2.ModelTag = "panel2"
# Add panels to spaceCraft
scObjectPrimary = scObject
if not useScPlus:
scObjectPrimary = scObject.primaryCentralSpacecraft
scObjectPrimary.addStateEffector(unitTestSim.panel1)
scObjectPrimary.addStateEffector(unitTestSim.panel2)
# Define mass properties of the rigid part of the spacecraft
scObjectPrimary.hub.mHub = 750.0
scObjectPrimary.hub.r_BcB_B = [[0.0], [0.0], [1.0]]
scObjectPrimary.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObjectPrimary.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObjectPrimary.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObjectPrimary.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObjectPrimary.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
if not useScPlus:
scStateMsg = scObject.primaryCentralSpacecraft.scStateOutMsg
else:
scStateMsg = scObject.scStateOutMsg
dataLog = scStateMsg.recorder()
dataPanel1 = unitTestSim.panel1.hingedRigidBodyOutMsg.recorder()
dataPanel2 = unitTestSim.panel2.hingedRigidBodyOutMsg.recorder()
dataPanel1Log = unitTestSim.panel1.hingedRigidBodyConfigLogOutMsg.recorder()
dataPanel2Log = unitTestSim.panel2.hingedRigidBodyConfigLogOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
unitTestSim.AddModelToTask(unitTaskName, dataPanel1)
unitTestSim.AddModelToTask(unitTaskName, dataPanel2)
unitTestSim.AddModelToTask(unitTaskName, dataPanel1Log)
unitTestSim.AddModelToTask(unitTaskName, dataPanel2Log)
if useScPlus:
scLog = scObject.logger("totRotAngMomPntC_N")
else:
scLog = pythonVariableLogger.PythonVariableLogger({
"totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N
})
unitTestSim.AddModelToTask(unitTaskName, scLog)
unitTestSim.InitializeSimulation()
stopTime = 10.0
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
rOut_CN_N = dataLog.r_CN_N
vOut_CN_N = dataLog.v_CN_N
sigma_BN = dataLog.sigma_BN
theta1 = dataPanel1.theta
theta2 = dataPanel2.theta
rB1N = dataPanel1Log.r_BN_N[0]
vB1N = dataPanel1Log.v_BN_N[0]
sB1N = dataPanel1Log.sigma_BN[0]
oB1N = dataPanel1Log.omega_BN_B[0]
rB2N = dataPanel2Log.r_BN_N[0]
vB2N = dataPanel2Log.v_BN_N[0]
sB2N = dataPanel2Log.sigma_BN[0]
oB2N = dataPanel2Log.omega_BN_B[0]
rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N)
# Get the last sigma and position
dataPos = [rOut_CN_N[-1]]
truePos = [[0., 0., 0.]]
initialRotAngMom_N = [[rotAngMom_N[0, 1], rotAngMom_N[0, 2], rotAngMom_N[0, 3]]]
finalRotAngMom = [rotAngMom_N[-1]]
plt.close("all")
plt.figure()
plt.clf()
plt.plot(rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 1] - rotAngMom_N[0, 1]) ,
rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 2] - rotAngMom_N[0, 2]) ,
rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 3] - rotAngMom_N[0, 3]) )
plt.xlabel('time (s)')
plt.ylabel('Ang. Momentum Difference')
plt.figure()
plt.clf()
plt.plot(dataLog.times() * 1e-9, vOut_CN_N[:, 0],
dataLog.times() * 1e-9, vOut_CN_N[:, 1],
dataLog.times() * 1e-9, vOut_CN_N[:, 2])
plt.xlabel('time (s)')
plt.ylabel('m/s')
plt.figure()
plt.clf()
plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 0],
color=unitTestSupport.getLineColor(0, 3),
label=r'$\sigma_{1}$')
plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 1],
color=unitTestSupport.getLineColor(1, 3),
label=r'$\sigma_{2}$')
plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 2],
color=unitTestSupport.getLineColor(2, 3),
label=r'$\sigma_{3}$')
plt.legend(loc='lower right')
plt.xlabel('time (s)')
plt.ylabel(r'MRP $\sigma_{B/N}$')
plt.figure()
plt.clf()
plt.plot(dataPanel1.times() * macros.NANO2SEC, theta1*macros.R2D,
color=unitTestSupport.getLineColor(0, 3),
label=r'$\theta_{1}$')
plt.plot(dataPanel2.times() * macros.NANO2SEC, theta2*macros.R2D,
color=unitTestSupport.getLineColor(1, 3),
label=r'$\theta_{2}$')
plt.legend(loc='lower right')
plt.xlabel('time (s)')
plt.ylabel('Hinge Angles [deg]')
if show_plots:
plt.show()
plt.close("all")
accuracy = 1e-10
for i in range(0, len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataPos[i], truePos[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed position test")
finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column
for i in range(0, len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqual(finalRotAngMom[i], initialRotAngMom_N[i], 3, accuracy):
testFailCount += 1
testMessages.append(
"FAILED: Hinged Rigid Body integrated test failed rotational angular momentum unit test")
# check config log messages
if not unitTestSupport.isArrayEqual(rB1N, [2.0, 0, 0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 r_BN_N config log test")
if not unitTestSupport.isArrayEqual(vB1N, [0.0, 0, 0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 v_BN_N config log test")
if not unitTestSupport.isArrayEqual(sB1N, [0.0, 0, 1.0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 sigma_BN config log test")
if not unitTestSupport.isArrayEqual(oB1N, [0.0, 0, 0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 omega_BN_B config log test")
if not unitTestSupport.isArrayEqual(rB2N, [-2.0, 0, 0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 r_BN_N config log test")
if not unitTestSupport.isArrayEqual(vB2N, [0.0, 0, 0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 v_BN_N config log test")
if not unitTestSupport.isArrayEqual(sB2N, [0.0, 0, 0.0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 sigma_BN config log test")
if not unitTestSupport.isArrayEqual(oB2N, [0.0, 0, 0], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 omega_BN_B config log test")
if testFailCount == 0:
print("PASSED: " + " Hinged Rigid Body integrated test with motor torques")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def hingedRigidBodyLagrangVsBasilisk(show_plots):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraftSystem.SpacecraftSystem()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
stepSize = 0.1
testProcessRate = macros.sec2nano(stepSize) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()
# Define Variable for panel 1
unitTestSim.panel1.mass = 100.0
unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel1.d = 1.5
unitTestSim.panel1.k = 5000.0
unitTestSim.panel1.c = 75
unitTestSim.panel1.r_HB_B = [[0.5], [1.0], [0.0]]
unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
unitTestSim.panel1.thetaInit = 0.0
unitTestSim.panel1.thetaDotInit = 0.0
# Define Variables for panel 2
unitTestSim.panel2.mass = 100.0
unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]]
unitTestSim.panel2.d = 1.5
unitTestSim.panel2.k = 5000.0
unitTestSim.panel2.c = 75
unitTestSim.panel2.r_HB_B = [[-0.5], [1.0], [0.0]]
unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]]
unitTestSim.panel2.thetaInit = 0.0
unitTestSim.panel2.thetaDotInit = 0.0
# Add panels to spaceCraft
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1)
scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2)
# Define force and torque
momentArm1_B = numpy.array([0.05, 0.0, 0.0])
force1_B = numpy.array([0.2, 0.7, 0.0])
torque1_B = numpy.cross(momentArm1_B,force1_B)
momentArm2_B = numpy.array([-0.03, 0.0, 0.0])
force2_B = numpy.array([0.0, 1.0, 0.0])
torque2_B = numpy.cross(momentArm2_B,force2_B)
# Add external force and torque
extFTObject = extForceTorque.ExtForceTorque()
extFTObject.ModelTag = "externalDisturbance"
extFTObject.extForce_B = [[force1_B[0]], [force1_B[1]], [force1_B[2]]]
extFTObject.extTorquePntB_B = [[torque1_B[0]], [torque1_B[1]], [torque1_B[2]]]
scObject.primaryCentralSpacecraft.addDynamicEffector(extFTObject)
unitTestSim.AddModelToTask(unitTaskName, extFTObject)
# Define mass properties of the rigid part of the spacecraft
scObject.primaryCentralSpacecraft.hub.mHub = 750.0
scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
# Set the initial values for the states
scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]]
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, scObject)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1)
unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2)
dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
stateLog = pythonVariableLogger.PythonVariableLogger({
"theta1": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta1').getState(),
"theta2": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta2').getState(),
})
unitTestSim.AddModelToTask(unitTaskName, stateLog)
unitTestSim.InitializeSimulation()
# Define times that the new forces will be applies
force1OffTime = 5.0
force2OnTime = 11.0
force2OffTime = 18.0
stopTime = 20.0
unitTestSim.ConfigureStopTime(macros.sec2nano(force1OffTime))
unitTestSim.ExecuteSimulation()
# Turn force1 off
extFTObject.extForce_B = [[0.0], [0.0], [0.0]]
extFTObject.extTorquePntB_B = [[0.0], [0.0], [0.0]]
unitTestSim.ConfigureStopTime(macros.sec2nano(force2OnTime))
unitTestSim.ExecuteSimulation()
# Turn force2 on
extFTObject.extForce_B = [[force2_B[0]], [force2_B[1]], [force2_B[2]]]
extFTObject.extTorquePntB_B = [[torque2_B[0]], [torque2_B[1]], [torque2_B[2]]]
unitTestSim.ConfigureStopTime(macros.sec2nano(force2OffTime))
unitTestSim.ExecuteSimulation()
# Turn force2 off and finish sim
extFTObject.extForce_B = [[0.0], [0.0], [0.0]]
extFTObject.extTorquePntB_B = [[0.0], [0.0], [0.0]]
unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime))
unitTestSim.ExecuteSimulation()
theta1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta1)
theta2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta2)
rOut_BN_N = dataLog.r_BN_N
sigmaOut_BN = dataLog.sigma_BN
thetaOut = 4.0*numpy.arctan(sigmaOut_BN[:,2])
# Developing the lagrangian result
# Define initial values
spacecraft = spacecraftClass()
spacecraft.hub.mass = scObject.primaryCentralSpacecraft.hub.mHub
spacecraft.hub.Inertia = scObject.primaryCentralSpacecraft.hub.IHubPntBc_B[2][2]
# Define variables for panel1
spacecraft.panel1.mass = unitTestSim.panel1.mass
spacecraft.panel1.Inertia = unitTestSim.panel1.IPntS_S[1][1]
spacecraft.panel1.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel1.r_HB_B))
spacecraft.panel1.beta = numpy.arctan2(unitTestSim.panel1.r_HB_B[1][0],unitTestSim.panel1.r_HB_B[0][0])
spacecraft.panel1.thetaH = 0.0
spacecraft.panel1.d = unitTestSim.panel1.d
spacecraft.panel1.k = unitTestSim.panel1.k
spacecraft.panel1.c = unitTestSim.panel1.c
# Define variables for panel2
spacecraft.panel2.mass = unitTestSim.panel2.mass
spacecraft.panel2.Inertia = unitTestSim.panel2.IPntS_S[1][1]
spacecraft.panel2.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel2.r_HB_B))
spacecraft.panel2.beta = numpy.arctan2(unitTestSim.panel2.r_HB_B[1][0],unitTestSim.panel2.r_HB_B[0][0])
spacecraft.panel2.thetaH = numpy.pi
spacecraft.panel2.d = unitTestSim.panel2.d
spacecraft.panel2.k = unitTestSim.panel2.k
spacecraft.panel2.c = unitTestSim.panel2.c
# Define initial conditions of the sim
time = numpy.arange(0.0,stopTime + stepSize,stepSize).flatten()
x0 = numpy.zeros(10)
x0[3] = unitTestSim.panel1.thetaInit
x0[4] = -unitTestSim.panel2.thetaInit
X = numpy.zeros((len(x0),len(time)))
X[:,0] = x0
for j in range (1,(len(time))):
if time[j-1] < force1OffTime:
spacecraft.xThrust_B = force1_B[0]
spacecraft.yThrust_B = force1_B[1]
spacecraft.Torque = torque1_B[2]
elif time[j-1] >= force2OnTime and time[j-1] < force2OffTime:
spacecraft.xThrust_B = force2_B[0]
spacecraft.yThrust_B = force2_B[1]
spacecraft.Torque = torque2_B[2]
else:
spacecraft.xThrust_B = 0.0
spacecraft.yThrust_B = 0.0
spacecraft.Torque = 0.0
X[:, j] = rk4(planarFlexFunction, X[:, j-1], stepSize, time[j-1], spacecraft)
plt.figure()
plt.clf()
plt.plot(time, X[0,:],'-b',label = "Lagrangian")
plt.plot(dataLog.times()*1e-9, (rOut_BN_N[:,0]-rOut_BN_N[:,0]),'-r',label = "Basilisk")
plt.plot([time[25], time[75], time[125], time[175]], [X[0,25], X[0,75], X[0,125], X[0,175],],'ok',label = "Test Points")
plt.xlabel('time (s)')
plt.ylabel('x position (m)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "XPositionLagrangianVsBasilisk"
PlotTitle = "X Position Lagrangian Vs Basilisk"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(time, X[1,:],'-b',label = "Lagrangian")
plt.plot(dataLog.times()*1e-9, (rOut_BN_N[:,1]-rOut_BN_N[:,1]),'r',label = "Basilisk")
plt.plot([time[25], time[75], time[125], time[175]], [X[1,25], X[1,75], X[1,125], X[1,175],],'ok',label = "Test Points")
plt.xlabel('time (s)')
plt.ylabel('y position (m)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "YPositionLagrangianVsBasilisk"
PlotTitle = "Y Position Lagrangian Vs Basilisk"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(time, X[2,:],'-b',label = "Lagrangian")
plt.plot(dataLog.times()*1e-9, thetaOut,'-r',label = "Basilisk")
plt.plot([time[25], time[75], time[125], time[175]], [X[2,25], X[2,75], X[2,125], X[2,175],],'ok',label = "Test Points")
plt.xlabel('time (s)')
plt.ylabel('theta (rad)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "ThetaLagrangianVsBasilisk"
PlotTitle = "Theta Lagrangian Vs Basilisk"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(time, X[3,:],'-b',label = "Lagrangian")
plt.plot(theta1Out[:,0]*1e-9, theta1Out[:,1],'-r',label = "Basilisk")
plt.plot([time[25], time[75], time[125], time[175]], [X[3,25], X[3,75], X[3,125], X[3,175],],'ok',label = "Test Points")
plt.xlabel('time (s)')
plt.ylabel('theta 1 (rad)')
plt.legend(loc ='upper left',numpoints = 1)
PlotName = "Theta1LagrangianVsBasilisk"
PlotTitle = "Theta 1 Position Lagrangian Vs Basilisk"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
plt.figure()
plt.clf()
plt.plot(time, -X[4,:],'-b',label = "Lagrangian")
plt.plot(theta2Out[:,0]*1e-9, theta2Out[:,1],'-r',label = "Basilisk")
plt.plot([time[25], time[75], time[125], time[175]], [-X[4,25], -X[4,75], -X[4,125], -X[4,175],],'ok',label = "Test Points")
plt.xlabel('time (s)')
plt.ylabel('theta 2 (rad)')
plt.legend(loc ='lower left',numpoints = 1)
PlotName = "Theta2LagrangianVsBasilisk"
PlotTitle = "Theta 2 Lagrangian Vs Basilisk"
format = r"width=0.8\textwidth"
unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path)
if show_plots:
plt.show()
plt.close("all")
accuracy = 1e-10
timeList = [25, 75, 125, 175]
for i in timeList:
if abs(X[0,i] - (rOut_BN_N[i,0]-rOut_BN_N[0,0])) > accuracy:
print(abs(X[0,i] - (rOut_BN_N[i,0]-rOut_BN_N[0,0])))
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed x position comparison ")
if abs(X[1,i] - (rOut_BN_N[i,1]-rOut_BN_N[0,1])) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed y position comparison ")
if abs(X[2,i] - thetaOut[i]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed theta comparison ")
if abs(X[3,i] - theta1Out[i,1]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed theta 1 comparison ")
if abs(-X[4,i] - theta2Out[i,1]) > accuracy:
testFailCount += 1
testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed theta 2 comparison ")
if testFailCount == 0:
print("PASSED: " + " Hinged Rigid Body Transient Integrated test")
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
def planarFlexFunction(x, t, variables):
theta = x[2]
theta1 = x[3]
theta2 = x[4]
xHubDot = x[5]
yHubDot = x[6]
thetaDot = x[7]
theta1Dot = x[8]
theta2Dot = x[9]
# Define variables for hub
mHub = variables.hub.mass
IHub = variables.hub.Inertia
# Define variables for panel1
mSP1 = variables.panel1.mass
ISP1 = variables.panel1.Inertia
Rhinge1 = variables.panel1.Rhinge
beta1 = variables.panel1.beta
thetaH1 = variables.panel1.thetaH
d1 = variables.panel1.d
k1 = variables.panel1.k
c1 = variables.panel1.c
# Define variables for panel2
mSP2 = variables.panel2.mass
ISP2 = variables.panel2.Inertia
Rhinge2 = variables.panel2.Rhinge
beta2 = variables.panel2.beta
thetaH2 = variables.panel2.thetaH
d2 = variables.panel2.d
k2 = variables.panel2.k
c2 = variables.panel2.c
Tx_B = variables.xThrust_B
Ty_B = variables.yThrust_B
Torque = variables.Torque
# Convert Tx_B and Ty_B to the inertial frame
dcm_BN = numpy.array([[numpy.cos(theta), numpy.sin(theta)],
[-numpy.sin(theta), numpy.cos(theta)]])
Thrust_N = numpy.dot(dcm_BN.transpose(),numpy.array([[Tx_B],[Ty_B]]))
Tx = Thrust_N[0,0]
Ty = Thrust_N[1,0]
matrixA = numpy.zeros((5,5))
vectorB = numpy.zeros(5)
# Populate X Translation Equation
matrixA[0,0] = 1.0
matrixA[0,1] = 0.0
matrixA[0,2] = -1/(mHub + mSP1 + mSP2)*(mSP1*Rhinge1*numpy.sin(beta1 + theta) + mSP2*Rhinge2*numpy.sin(beta2 + theta) + d1*mSP1*numpy.sin(thetaH1 + theta + theta1) + d2*mSP2*numpy.sin(thetaH2 + theta + theta2))
matrixA[0,3] = -1/(mHub + mSP1 + mSP2)*(d1*mSP1*numpy.sin(thetaH1 + theta + theta1))
matrixA[0,4] = -1/(mHub + mSP1 + mSP2)*(d2*mSP2*numpy.sin(thetaH2 + theta + theta2))
vectorB[0] = 1/(mHub + mSP1 + mSP2)*(Tx + mSP1*Rhinge1*numpy.cos(beta1 + theta)*thetaDot**2 + mSP2*Rhinge2*numpy.cos(beta2 + theta)*thetaDot**2 + d1*mSP1*numpy.cos(thetaH1 + theta + theta1)*thetaDot**2 + d2*mSP2*numpy.cos(thetaH2 + theta + theta2)*thetaDot**2
+ 2*d1*mSP1*numpy.cos(thetaH1 + theta + theta1)*thetaDot*theta1Dot + d1*mSP1*numpy.cos(thetaH1 + theta + theta1)*theta1Dot**2 + 2*d2*mSP2*numpy.cos(thetaH2 + theta + theta2)*thetaDot*theta2Dot
+ d2*mSP2*numpy.cos(thetaH2 + theta + theta2)*theta2Dot**2)
# Populate Y Translation Equation
matrixA[1,0] = 0.0
matrixA[1,1] = 1.0
matrixA[1,2] = 1/(mHub + mSP1 + mSP2)*(mSP1*Rhinge1*numpy.cos(beta1 + theta) + mSP2*Rhinge2*numpy.cos(beta2 + theta) + d1*mSP1*numpy.cos(thetaH1 + theta + theta1) + d2*mSP2*numpy.cos(thetaH2 + theta + theta2))
matrixA[1,3] = 1/(mHub + mSP1 + mSP2)*(d1*mSP1*numpy.cos(thetaH1 + theta + theta1))
matrixA[1,4] = 1/(mHub + mSP1 + mSP2)*(d2*mSP2*numpy.cos(thetaH2 + theta + theta2))
vectorB[1] = 1/(mHub + mSP1 + mSP2)*(Ty + mSP1*Rhinge1*numpy.sin(beta1 + theta)*thetaDot**2 + mSP2*Rhinge2*numpy.sin(beta2 + theta)*thetaDot**2 + d1*mSP1*numpy.sin(thetaH1 + theta + theta1)*thetaDot**2 + d2*mSP2*numpy.sin(thetaH2 + theta + theta2)*thetaDot**2
+ 2*d1*mSP1*numpy.sin(thetaH1 + theta + theta1)*thetaDot*theta1Dot + d1*mSP1*numpy.sin(thetaH1 + theta + theta1)*theta1Dot**2 + 2*d2*mSP2*numpy.sin(thetaH2 + theta + theta2)*thetaDot*theta2Dot
+ d2*mSP2*numpy.sin(thetaH2 + theta + theta2)*theta2Dot**2)
# Populate theta Equation
matrixA[2,0] = -1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(mSP1*Rhinge1*numpy.sin(beta1 + theta)
+ mSP2*Rhinge2*numpy.sin(beta2 + theta) + d1*mSP1*numpy.sin(thetaH1 + theta + theta1) + d2*mSP2*numpy.sin(thetaH2 + theta + theta2))
matrixA[2,1] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(mSP1*Rhinge1*numpy.cos(beta1 + theta)
+ mSP2*Rhinge2*numpy.cos(beta2 + theta) + d1*mSP1*numpy.cos(thetaH1 + theta + theta1) + d2*mSP2*numpy.cos(thetaH2 + theta + theta2))
matrixA[2,2] = 1.0
matrixA[2,3] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(ISP1
+ d1**2*mSP1 + d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1))
matrixA[2,4] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(ISP2
+ d2**2*mSP2 + d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))
vectorB[2] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(Torque
- 2*d1*mSP1*Rhinge1*numpy.sin(beta1 - thetaH1 - theta1)*thetaDot*theta1Dot - d1*mSP1*Rhinge1*numpy.sin(beta1 - thetaH1 - theta1)*theta1Dot**2
- 2*d2*mSP2*Rhinge2*numpy.sin(beta2 - thetaH2 - theta2)*thetaDot*theta2Dot - d2*mSP2*Rhinge2*numpy.sin(beta2 - thetaH2 - theta2)*theta2Dot**2)
# Populate theta1 Equation
matrixA[3,0] = -1/(ISP1 + d1**2*mSP1)*(d1*mSP1*numpy.sin(thetaH1 + theta + theta1))
matrixA[3,1] = 1/(ISP1 + d1**2*mSP1)*(d1*mSP1*numpy.cos(thetaH1 + theta + theta1))
matrixA[3,2] = 1/(ISP1 + d1**2*mSP1)*(ISP1 + d1**2*mSP1 + d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1))
matrixA[3,3] = 1.0
matrixA[3,4] = 0.0
vectorB[3] = 1/(ISP1 + d1**2*mSP1)*(-k1*theta1 + d1*mSP1*Rhinge1*numpy.sin(beta1 - thetaH1 - theta1)*thetaDot**2 - c1*theta1Dot)
# Populate theta2 Equation
matrixA[4,0] = -1/(ISP2 + d2**2*mSP2)*(d2*mSP2*numpy.sin(thetaH2 + theta + theta2))
matrixA[4,1] = 1/(ISP2 + d2**2*mSP2)*(d2*mSP2*numpy.cos(thetaH2 + theta + theta2))
matrixA[4,2] = 1/(ISP2 + d2**2*mSP2)*(ISP2 + d2**2*mSP2 + d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))
matrixA[4,3] = 0.0
matrixA[4,4] = 1.0
vectorB[4] = 1/(ISP2 + d2**2*mSP2)*(-k2*theta2 + d2*mSP2*Rhinge2*numpy.sin(beta2 - thetaH2 - theta2)*thetaDot**2 - c2*theta2Dot)
Xdot = numpy.zeros(len(x))
# Populate Trivial derivatives
Xdot[0] = xHubDot
Xdot[1] = yHubDot
Xdot[2] = thetaDot
Xdot[3] = theta1Dot
Xdot[4] = theta2Dot
# Calculate nontrivial derivatives
result = numpy.dot(numpy.linalg.inv(matrixA),vectorB)
Xdot[5:10] = result
return Xdot
def rk4(Fn, X, h, t, varargin):
k1 = h*Fn(X, t, varargin)
k2 = h*Fn(X+k1/2, t+h/2, varargin)
k3 = h*Fn(X+k2/2, t+h/2, varargin)
k4 = h*Fn(X+k3, t+h, varargin)
Z = X + (k1 + 2*k2 + 2*k3 + k4)/6.0
return Z
class solarPanel:
mass = 0.0
Inertia = 0.0
Rhinge = 0.0
beta = 0.0
thetaH = 0.0
d = 0.0
k = 0.0
c = 0.0
class hubClass:
mass = 0.0
Inertia = 0.0
class spacecraftClass:
panel1 = solarPanel()
panel2 = solarPanel()
hub = hubClass()
xThrust_B = 0.0
yThrust_B = 0.0
Torque = 0.0
def newtonRapshon(funcAndDervi,guess,tolerance,variables):
xOld = guess
for i in range(1,101):
fx, fPrimex = funcAndDervi(xOld, variables)
xNew = xOld - fx/fPrimex
if abs(xNew - xOld) < tolerance:
break
xOld = xNew
return xNew
def boxAndWingsFandFPrime(theta,variables):
# Define variables
F = variables.F
mSC = variables.mSC
k = variables.k
mSP = variables.mSP
d = variables.d
aSP = F/mSC
fX = k*theta + mSP*aSP*d*numpy.cos(theta)
fPrimeX = k - mSP*aSP*d*numpy.sin(theta)
return fX, fPrimeX
class boxAndWingParameters:
F = 0
mSC = 0
k = 0
mSP = 0
d = 0
if __name__ == "__main__":
# test_hingedRigidBodyGravity(True)
# test_hingedRigidBodyNoGravity(True)
# test_hingedRigidBodyNoGravityDamping(True)
# test_hingedRigidBodyThetaSS(True)
# test_hingedRigidBodyFrequencyAmp(True)
# test_hingedRigidBodyMotorTorque(True, True)
hingedRigidBodyLagrangVsBasilisk(True)