Source code for test_hingedRigidBodyStateEffector


# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


import inspect
import os

import numpy
import pytest

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('simulation')



from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraft
from Basilisk.simulation import hingedRigidBodyStateEffector
from Basilisk.utilities import macros
from Basilisk.utilities import pythonVariableLogger
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import extForceTorque
from Basilisk.simulation import spacecraftSystem
from Basilisk.architecture import messaging

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_


[docs] @pytest.mark.parametrize("function", ["hingedRigidBodyGravity", "hingedRigidBodyNoGravity" , "hingedRigidBodyNoGravityDamping", "hingedRigidBodyThetaSS" , "hingedRigidBodyFrequencyAmp" , "hingedRigidBodyLagrangVsBasilisk" ]) def test_hingedRigidBody(show_plots, function): """Module Unit Test""" [testResults, testMessage] = eval(function + '(show_plots)') assert testResults < 1, testMessage
[docs] @pytest.mark.parametrize("useScPlus", [True, False]) def test_hingedRigidBodyMotorTorque(show_plots, useScPlus): """Module Unit Test""" [testResults, testMessage] = hingedRigidBodyMotorTorque(show_plots, useScPlus) assert testResults < 1, testMessage
def hingedRigidBodyGravity(show_plots): __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.001) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Create two hinged rigid bodies unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 100.0 unitTestSim.panel1.c = 0.0 unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0 unitTestSim.panel1.thetaDotInit = 0.0 unitTestSim.panel1.ModelTag = "Panel1" # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 100.0 unitTestSim.panel2.c = 0.0 unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel2.thetaInit = 0.0 unitTestSim.panel2.thetaDotInit = 0.0 unitTestSim.panel2.ModelTag = "Panel2" # Add panels to spaceCraft scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1) scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2) # Define mass properties of the rigid part of the spacecraft scObject.primaryCentralSpacecraft.hub.mHub = 750.0 scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [1.0]] scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]] scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]] scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) # Add Earth gravity to the sim unitTestSim.earthGravBody = gravityEffector.GravBodyData() unitTestSim.earthGravBody.planetName = "earth_planet_data" unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters! unitTestSim.earthGravBody.isCentralBody = True scObject.primaryCentralSpacecraft.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody]) # Log the spacecraft state message datLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, datLog) # Add energy and momentum variables to log panel1Log = unitTestSim.panel1.logger("forceOnBody_B") panel2Log = unitTestSim.panel2.logger("forceOnBody_B") scLog = pythonVariableLogger.PythonVariableLogger({ "totOrbEnergy": lambda _: scObject.primaryCentralSpacecraft.totOrbEnergy, "totOrbAngMomPntN_N": lambda _: scObject.primaryCentralSpacecraft.totOrbAngMomPntN_N, "totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N, "totRotEnergy": lambda _: scObject.primaryCentralSpacecraft.totRotEnergy, }) unitTestSim.AddModelToTask(unitTaskName, panel1Log) unitTestSim.AddModelToTask(unitTaskName, panel2Log) unitTestSim.AddModelToTask(unitTaskName, scLog) # Initialize the simulation unitTestSim.InitializeSimulation() stopTime = 2.5 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() sigmaOut = datLog.sigma_BN forcePanel1 = unitTestSupport.addTimeColumn(panel1Log.times(), panel1Log.forceOnBody_B) forcePanel2 = unitTestSupport.addTimeColumn(panel2Log.times(), panel2Log.forceOnBody_B) orbEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbEnergy) orbAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotEnergy) dataSigma = [sigmaOut[-1]] trueSigma = [[0.06170318243240492, -0.07089090074412899, 0.06409500412692531]] initialOrbAngMom_N = [[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]] finalOrbAngMom = [orbAngMom_N[-1]] initialRotAngMom_N = [[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]] finalRotAngMom = [rotAngMom_N[-1]] initialOrbEnergy = [[orbEnergy[0,1]]] finalOrbEnergy = [orbEnergy[-1]] initialRotEnergy = [[rotEnergy[0,1]]] finalRotEnergy = [rotEnergy[-1]] plt.close("all") plt.figure() plt.clf() plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInOrbitalAngularMomentumGravity" PlotTitle = "Change in Orbital Angular Momentum with Gravity" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInOrbitalEnergyGravity" PlotTitle = "Change in Orbital Energy with Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInRotationalAngularMomentumGravity" PlotTitle = "Change In Rotational Angular Momentum with Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInRotationalEnergyGravity" PlotTitle = "Change In Rotational Energy with Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(forcePanel1[:,0]*1e-9, forcePanel1[:,1], forcePanel1[:,0]*1e-9, forcePanel1[:,2], forcePanel1[:,0]*1e-9, forcePanel1[:,3]) plt.xlabel('time (s)') plt.ylabel('Force about Point B') plt.figure() plt.clf() plt.plot(forcePanel2[:,0]*1e-9, forcePanel2[:,1], forcePanel2[:,0]*1e-9, forcePanel2[:,2], forcePanel2[:,0]*1e-9, forcePanel2[:,3]) plt.xlabel('time (s)') plt.ylabel('Force about Point B') if show_plots: plt.show() plt.close("all") accuracy = 1e-10 for i in range(0,len(trueSigma)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataSigma[i],trueSigma[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity attitude test") finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column finalRotEnergy = numpy.delete(finalRotEnergy, 0, axis=1) # remove time column finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity rotational angular momentum unit test") for i in range(0,len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity rotational energy unit test") for i in range(0,len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed gravity orbital energy unit test") if testFailCount == 0: print("PASSED: " + " Hinged Rigid Body gravity integrated test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def hingedRigidBodyNoGravity(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.001) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 100.0 unitTestSim.panel1.c = 0.0 unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0 unitTestSim.panel1.thetaDotInit = 0.0 # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 100.0 unitTestSim.panel2.c = 0.0 unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel2.thetaInit = 0.0 unitTestSim.panel2.thetaDotInit = 0.0 # Add panels to spaceCraft scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1) scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2) # Define mass properties of the rigid part of the spacecraft scObject.primaryCentralSpacecraft.hub.mHub = 750.0 scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [1.0]] scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.1], [-0.4], [0.3]] scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[-0.2], [0.5], [0.1]] scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) scLog = pythonVariableLogger.PythonVariableLogger({ "totOrbEnergy": lambda _: scObject.primaryCentralSpacecraft.totOrbEnergy, "totOrbAngMomPntN_N": lambda _: scObject.primaryCentralSpacecraft.totOrbAngMomPntN_N, "totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N, "totRotEnergy": lambda _: scObject.primaryCentralSpacecraft.totRotEnergy, }) unitTestSim.AddModelToTask(unitTaskName, scLog) unitTestSim.InitializeSimulation() stopTime = 2.5 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() sigmaOut = dataLog.sigma_BN rOut_BN_N = dataLog.r_BN_N vOut_CN_N = dataLog.v_CN_N orbEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbEnergy) orbAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N) rotEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotEnergy) # Get the last sigma and position dataSigma = [sigmaOut[-1]] dataPos = [rOut_BN_N[-1]] truePos = [[-0.15832794740648992, 1.122481716747217, -0.37975995949382907]] trueSigma = [[0.06170318243240492, -0.07089090074412899, 0.06409500412692531]] initialOrbAngMom_N = [[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]] finalOrbAngMom = [orbAngMom_N[-1]] initialRotAngMom_N = [[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]] finalRotAngMom = [rotAngMom_N[-1]] initialOrbEnergy = [[orbEnergy[0,1]]] finalOrbEnergy = [orbEnergy[-1]] initialRotEnergy = [[rotEnergy[0,1]]] finalRotEnergy = [rotEnergy[-1]] plt.close("all") plt.figure() plt.clf() plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInOrbitalAngularMomentumNoGravity" PlotTitle = "Change in Orbital Angular Momentum No Gravity" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInOrbitalEnergyNoGravity" PlotTitle = "Change in Orbital Energy No Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInRotationalAngularMomentumNoGravity" PlotTitle = "Change In Rotational Angular Momentum No Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(rotEnergy[:,0]*1e-9, (rotEnergy[:,1] - rotEnergy[0,1])/rotEnergy[0,1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInRotationalEnergyNoGravity" PlotTitle = "Change In Rotational Energy No Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(dataLog.times()*1e-9, vOut_CN_N[:,0], dataLog.times()*1e-9, vOut_CN_N[:,1], dataLog.times()*1e-9, vOut_CN_N[:,2]) plt.xlabel('time (s)') plt.ylabel('m/s') PlotName = "VelocityOfCenterOfMassNoGravity" PlotTitle = "Velocity Of Center Of Mass No Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(dataLog.times()*1e-9, (vOut_CN_N[:,0] - vOut_CN_N[:,0])/vOut_CN_N[:,0], dataLog.times()*1e-9, (vOut_CN_N[:,1] - vOut_CN_N[:,1])/vOut_CN_N[:,1], dataLog.times()*1e-9, (vOut_CN_N[:,2] - vOut_CN_N[:,2])/vOut_CN_N[:,2]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInVelocityOfCenterOfMassNoGravity" PlotTitle = "Change In Velocity Of Center Of Mass No Gravity" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) if show_plots: plt.show() plt.close("all") accuracy = 1e-10 for i in range(0,len(truePos)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataPos[i],truePos[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed position test") for i in range(0,len(trueSigma)): # check a vector values if not unitTestSupport.isArrayEqualRelative(dataSigma[i],trueSigma[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed attitude test") finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column finalRotEnergy = numpy.delete(finalRotEnergy, 0, axis=1) # remove time column finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed rotational angular momentum unit test") for i in range(0,len(initialRotEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i],initialRotEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed rotational energy unit test") for i in range(0,len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed orbital energy unit test") if testFailCount == 0: print("PASSED: " + " Hinged Rigid Body integrated test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def hingedRigidBodyNoGravityDamping(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.001) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 100.0 unitTestSim.panel1.c = 6.0 unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel1.thetaInit = 5*numpy.pi/180.0 unitTestSim.panel1.thetaDotInit = 0.0 # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 100.0 unitTestSim.panel2.c = 7.0 unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel2.thetaInit = 0.0 unitTestSim.panel2.thetaDotInit = 0.0 # Add panels to spaceCraft scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1) scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2) # Define mass properties of the rigid part of the spacecraft scObject.primaryCentralSpacecraft.hub.mHub = 750.0 scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [1.0]] scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.1], [-0.4], [0.3]] scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[-0.2], [0.5], [0.1]] scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.1], [-0.1], [0.1]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) scLog = pythonVariableLogger.PythonVariableLogger({ "totOrbEnergy": lambda _: scObject.primaryCentralSpacecraft.totOrbEnergy, "totOrbAngMomPntN_N": lambda _: scObject.primaryCentralSpacecraft.totOrbAngMomPntN_N, "totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N, }) unitTestSim.AddModelToTask(unitTaskName, scLog) unitTestSim.InitializeSimulation() stopTime = 2.5 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() vOut_CN_N = dataLog.v_CN_N orbEnergy = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbEnergy) orbAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totOrbAngMomPntN_N) rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N) initialOrbAngMom_N = [[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]] finalOrbAngMom = [orbAngMom_N[-1]] initialRotAngMom_N = [[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]] finalRotAngMom = [rotAngMom_N[-1]] initialOrbEnergy = [[orbEnergy[0,1]]] finalOrbEnergy = [orbEnergy[-1]] plt.close("all") plt.figure() plt.clf() plt.plot(orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,1] - orbAngMom_N[0,1])/orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,2] - orbAngMom_N[0,2])/orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, (orbAngMom_N[:,3] - orbAngMom_N[0,3])/orbAngMom_N[0,3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInOrbitalAngularMomentumNoGravityDamping" PlotTitle = "Change in Orbital Angular Momentum No Gravity with Damping" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(orbEnergy[:,0]*1e-9, (orbEnergy[:,1] - orbEnergy[0,1])/orbEnergy[0,1]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInOrbitalEnergyNoGravityDamping" PlotTitle = "Change in Orbital Energy No Gravity with Damping" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,1] - rotAngMom_N[0,1])/rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,2] - rotAngMom_N[0,2])/rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, (rotAngMom_N[:,3] - rotAngMom_N[0,3])/rotAngMom_N[0,3]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInRotationalAngularMomentumNoGravityDamping" PlotTitle = "Change In Rotational Angular Momentum No Gravity with Damping" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(dataLog.times()*1e-9, vOut_CN_N[:, 0], dataLog.times()*1e-9, vOut_CN_N[:, 1], dataLog.times()*1e-9, vOut_CN_N[:, 2]) plt.xlabel('time (s)') plt.ylabel('m/s') PlotName = "VelocityOfCenterOfMassNoGravityDamping" PlotTitle = "Velocity Of Center Of Mass No Gravity with Damping" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(dataLog.times()*1e-9, (vOut_CN_N[:, 0] - vOut_CN_N[:, 0])/vOut_CN_N[:, 0], dataLog.times()*1e-9, (vOut_CN_N[:, 1] - vOut_CN_N[:, 1])/vOut_CN_N[:, 1], dataLog.times()*1e-9, (vOut_CN_N[:, 2] - vOut_CN_N[:, 2])/vOut_CN_N[:, 2]) plt.xlabel('time (s)') plt.ylabel('Relative Difference') PlotName = "ChangeInVelocityOfCenterOfMassNoGravityDamping" PlotTitle = "Change In Velocity Of Center Of Mass No Gravity with Damping" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) if show_plots: plt.show() plt.close("all") finalOrbAngMom = numpy.delete(finalOrbAngMom, 0, axis=1) # remove time column finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column finalOrbEnergy = numpy.delete(finalOrbEnergy, 0, axis=1) # remove time column accuracy = 1e-10 for i in range(0,len(initialOrbAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test with damping failed orbital angular momentum unit test") for i in range(0,len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test with damping failed rotational angular momentum unit test") for i in range(0,len(initialOrbEnergy)): # check a vector values if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i],initialOrbEnergy[i],1,accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test with damping failed orbital energy unit test") if testFailCount == 0: print("PASSED: " + " Hinged Rigid Body integrated test with damping") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def hingedRigidBodyThetaSS(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread stepSize = 0.1 testProcessRate = macros.sec2nano(stepSize) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 100.0 unitTestSim.panel1.c = 75 unitTestSim.panel1.r_HB_B = [[0.5], [1.0], [0.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]] unitTestSim.panel1.thetaInit = 0.0 unitTestSim.panel1.thetaDotInit = 0.0 # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 100.0 unitTestSim.panel2.c = 75 unitTestSim.panel2.r_HB_B = [[-0.5], [1.0], [0.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]] unitTestSim.panel2.thetaInit = 0.0 unitTestSim.panel2.thetaDotInit = 0.0 # Add panels to spaceCraft scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1) scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2) # Add external force and torque extFTObject = extForceTorque.ExtForceTorque() extFTObject.ModelTag = "externalDisturbance" extFTObject.extTorquePntB_B = [[0], [0], [0]] extFTObject.extForce_B = [[0], [1], [0]] scObject.primaryCentralSpacecraft.addDynamicEffector(extFTObject) unitTestSim.AddModelToTask(unitTaskName, extFTObject) # Define mass properties of the rigid part of the spacecraft scObject.primaryCentralSpacecraft.hub.mHub = 750.0 scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) stateLog = pythonVariableLogger.PythonVariableLogger({ "theta1": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta1').getState(), "theta2": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta2').getState(), }) unitTestSim.AddModelToTask(unitTaskName, stateLog) unitTestSim.InitializeSimulation() stopTime = 60.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() theta1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta1) theta2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta2) # Developing the lagrangian result # Define initial values spacecraft = spacecraftClass() spacecraft.hub.mass = scObject.primaryCentralSpacecraft.hub.mHub spacecraft.hub.Inertia = scObject.primaryCentralSpacecraft.hub.IHubPntBc_B[2][2] # Define variables for panel1 spacecraft.panel1.mass = unitTestSim.panel1.mass spacecraft.panel1.Inertia = unitTestSim.panel1.IPntS_S[1][1] spacecraft.panel1.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel1.r_HB_B)) spacecraft.panel1.beta = numpy.arctan2(unitTestSim.panel1.r_HB_B[1][0],unitTestSim.panel1.r_HB_B[0][0]) spacecraft.panel1.thetaH = 0.0 spacecraft.panel1.d = unitTestSim.panel1.d spacecraft.panel1.k = unitTestSim.panel1.k spacecraft.panel1.c = unitTestSim.panel1.c # Define variables for panel2 spacecraft.panel2.mass = unitTestSim.panel2.mass spacecraft.panel2.Inertia = unitTestSim.panel2.IPntS_S[1][1] spacecraft.panel2.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel2.r_HB_B)) spacecraft.panel2.beta = numpy.arctan2(unitTestSim.panel2.r_HB_B[1][0],unitTestSim.panel2.r_HB_B[0][0]) spacecraft.panel2.thetaH = numpy.pi spacecraft.panel2.d = unitTestSim.panel2.d spacecraft.panel2.k = unitTestSim.panel2.k spacecraft.panel2.c = unitTestSim.panel2.c # Define body force and torque spacecraft.xThrust_B = 0.0 spacecraft.yThrust_B = extFTObject.extForce_B[1][0] spacecraft.Torque = 0.0 # Define initial conditions of the sim time = numpy.arange(0.0,stopTime + stepSize,stepSize).flatten() x0 = numpy.zeros(10) x0[3] = unitTestSim.panel1.thetaInit x0[4] = -unitTestSim.panel2.thetaInit X = numpy.zeros((len(x0),len(time))) X[:,0] = x0 for j in range (1,(len(time))): X[:, j] = rk4(planarFlexFunction, X[:, j-1], stepSize, time[j-1], spacecraft) # Find steady state value variablesIn = boxAndWingParameters() variablesIn.k = spacecraft.panel1.k variablesIn.d = spacecraft.panel1.d variablesIn.F = spacecraft.yThrust_B variablesIn.mSC = spacecraft.hub.mass + spacecraft.panel1.mass + spacecraft.panel2.mass variablesIn.mSP = spacecraft.panel1.mass thetaSSGuess = -0.01 tolerance = 1e-10 thetaSS = newtonRapshon(boxAndWingsFandFPrime,thetaSSGuess,tolerance,variablesIn) plt.close("all") plt.figure() plt.clf() plt.plot(time, X[3,:],'-b',label = "Lagrangian") plt.plot(theta1Out[:,0]*1e-9, theta1Out[:,1],'-r',label = "Basilisk") plt.plot(theta1Out[-1,0]*1e-9, thetaSS,'ok',label = "BOE Calculation") plt.xlabel('time (s)') plt.ylabel('theta 1 (rad)') plt.legend(loc ='upper right',numpoints = 1) PlotName = "BOECalculationForSteadyStateTheta1DeflectionVsSimulation" PlotTitle = "BOE Calculation for Steady State Theta 1 Deflection vs Simulation" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(time, -X[4,:],'-b',label = "Lagrangian") plt.plot(theta2Out[:,0]*1e-9, theta2Out[:,1],'-r',label = "Basilisk") plt.plot(theta2Out[-1,0]*1e-9, thetaSS,'ok',label = "BOE Calculation") plt.xlabel('time (s)') plt.ylabel('theta 2 (rad)') plt.legend(loc ='upper right',numpoints = 1) PlotName = "BOECalculationForSteadyStateTheta2DeflectionVsSimulation" PlotTitle = "BOE Calculation for Steady State Theta 2 Deflection vs Simulation" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) if show_plots: plt.show() plt.close("all") accuracy = 1e-6 if abs(theta1Out[-1,1] - thetaSS) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated steady state test failed theta 1 comparison ") if abs(theta2Out[-1,1] - thetaSS) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated steady state test failed theta 2 comparison ") if testFailCount == 0: print("PASSED: " + " Hinged Rigid Body steady state Integrated test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def hingedRigidBodyFrequencyAmp(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread stepSize = 0.1 testProcessRate = macros.sec2nano(stepSize) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 300.0 unitTestSim.panel1.c = 0.0 unitTestSim.panel1.r_HB_B = [[0.5], [1.0], [0.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]] unitTestSim.panel1.thetaInit = 0.0 unitTestSim.panel1.thetaDotInit = 0.0 # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 300.0 unitTestSim.panel2.c = 0.0 unitTestSim.panel2.r_HB_B = [[-0.5], [1.0], [0.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]] unitTestSim.panel2.thetaInit = 0.0 unitTestSim.panel2.thetaDotInit = 0.0 # Add panels to spaceCraft scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1) scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2) # Add external force and torque extFTObject = extForceTorque.ExtForceTorque() extFTObject.ModelTag = "externalDisturbance" extFTObject.extTorquePntB_B = [[0], [0], [0]] force = 1 extFTObject.extForce_B = [[0], [force], [0]] scObject.primaryCentralSpacecraft.addDynamicEffector(extFTObject) unitTestSim.AddModelToTask(unitTaskName, extFTObject) # Define mass properties of the rigid part of the spacecraft scObject.primaryCentralSpacecraft.hub.mHub = 750.0 scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) stateLog = pythonVariableLogger.PythonVariableLogger({ "theta1": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta1').getState(), "theta2": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta2').getState(), }) unitTestSim.AddModelToTask(unitTaskName, stateLog) unitTestSim.InitializeSimulation() stopTime = 58 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime/2)) unitTestSim.ExecuteSimulation() extFTObject.extTorquePntB_B = [0.0, 0.0, 0.0] extFTObject.extForce_B = [0.0, 0.0, 0.0] unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() rOut_BN_N = dataLog.r_BN_N sigmaOut_BN = dataLog.sigma_BN thetaOut = 4.0*numpy.arctan(sigmaOut_BN[:,2]) theta1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta1) theta2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta2) # Developing the lagrangian result # Define initial values spacecraft = spacecraftClass() spacecraft.hub.mass = scObject.primaryCentralSpacecraft.hub.mHub spacecraft.hub.Inertia = scObject.primaryCentralSpacecraft.hub.IHubPntBc_B[2][2] # Define variables for panel1 spacecraft.panel1.mass = unitTestSim.panel1.mass spacecraft.panel1.Inertia = unitTestSim.panel1.IPntS_S[1][1] spacecraft.panel1.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel1.r_HB_B)) spacecraft.panel1.beta = numpy.arctan2(unitTestSim.panel1.r_HB_B[1][0],unitTestSim.panel1.r_HB_B[0][0]) spacecraft.panel1.thetaH = 0.0 spacecraft.panel1.d = unitTestSim.panel1.d spacecraft.panel1.k = unitTestSim.panel1.k spacecraft.panel1.c = unitTestSim.panel1.c # Define variables for panel2 spacecraft.panel2.mass = unitTestSim.panel2.mass spacecraft.panel2.Inertia = unitTestSim.panel2.IPntS_S[1][1] spacecraft.panel2.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel2.r_HB_B)) spacecraft.panel2.beta = numpy.arctan2(unitTestSim.panel2.r_HB_B[1][0],unitTestSim.panel2.r_HB_B[0][0]) spacecraft.panel2.thetaH = numpy.pi spacecraft.panel2.d = unitTestSim.panel2.d spacecraft.panel2.k = unitTestSim.panel2.k spacecraft.panel2.c = unitTestSim.panel2.c # Define body force and torque # Define initial conditions of the sim check = 0 time = numpy.arange(0.0,stopTime + stepSize,stepSize).flatten() x0 = numpy.zeros(10) x0[3] = unitTestSim.panel1.thetaInit x0[4] = -unitTestSim.panel2.thetaInit X = numpy.zeros((len(x0),len(time))) X[:,0] = x0 for j in range (1,(len(time))): if time[j-1] < stopTime/2: spacecraft.xThrust_B = 0.0 spacecraft.yThrust_B = force spacecraft.Torque = 0.0 else: spacecraft.xThrust_B = 0.0 spacecraft.yThrust_B = 0.0 spacecraft.Torque = 0.0 X[:, j] = rk4(planarFlexFunction, X[:, j-1], stepSize, time[j-1], spacecraft) if check == 0 and X[3,j] < X[3,j-1]: check = 1 if check ==1 and X[3,j] > X[3,j-1]: check = 2 if check == 2 and X[3,j] < X[3,j-1]: check = 3 indexFirstPeak = j-1 if check == 3 and X[3,j] > X[3,j-1]: check = 4 if check==4 and X[3,j] < X[3,j-1]: check = 5 indexSecondPeak = j-1 if check == 5 and X[3,j] > X[3,j-1]: check = 6 if check==6 and X[3,j] < X[3,j-1]: check = 7 indexThirdPeak = j-1 # Find the period T1 = time[indexSecondPeak] - time[indexFirstPeak] T2 = time[indexThirdPeak] - time[indexSecondPeak] freqHz = 1/((T1 + T2)/2) matrixM = numpy.zeros([6,6]) matrixM[0,0] = 1.0 matrixM[1,1] = spacecraft.hub.mass + spacecraft.panel1.mass + spacecraft.panel2.mass matrixM[2,2] = 1.0 matrixM[3,3] = spacecraft.panel1.Inertia + spacecraft.panel1.mass*spacecraft.panel1.d**2 matrixM[4,4] = 1.0 matrixM[5,5] = spacecraft.panel2.Inertia + spacecraft.panel2.mass*spacecraft.panel2.d**2 # Define off diagonal terms matrixM[1,3] = spacecraft.panel1.mass*spacecraft.panel1.d matrixM[1,5] = spacecraft.panel2.mass*spacecraft.panel2.d matrixM[3,1] = spacecraft.panel1.mass*spacecraft.panel1.d matrixM[5,1] = spacecraft.panel2.mass*spacecraft.panel2.d # Define A matrix matrixA = numpy.zeros([6,6]) matrixA[0,1] = 1.0 matrixA[2,3] = 1.0 matrixA[4,5] = 1.0 matrixA[3,2] = -spacecraft.panel1.k matrixA[3,3] = -spacecraft.panel1.c matrixA[5,4] = -spacecraft.panel2.k matrixA[5,5] = -spacecraft.panel2.c # Define Atilde matrixAtilde = numpy.dot(numpy.linalg.inv(matrixM),matrixA) eigenValues = numpy.linalg.eigvals(matrixAtilde) omegaAnalytical = numpy.imag(eigenValues[2]) omegaAnalyticalHz = omegaAnalytical/(2*numpy.pi) diffFreq = (freqHz-omegaAnalyticalHz)/omegaAnalyticalHz # Find thetaMax - the max deflection while the force is being applied variablesIn = boxAndWingParameters() variablesIn.k = spacecraft.panel1.k variablesIn.d = spacecraft.panel1.d variablesIn.F = force variablesIn.mSC = spacecraft.hub.mass + spacecraft.panel1.mass + spacecraft.panel2.mass variablesIn.mSP = spacecraft.panel1.mass thetaSSGuess = -0.01 tolerance = 1e-14 thetaSS = newtonRapshon(boxAndWingsFandFPrime,thetaSSGuess,tolerance,variablesIn) thetaMax = 2*thetaSS # Pull thetaMax from the sim thetaMaxSim = min(X[3,:]) diffThetaMax = abs((thetaMax-thetaMaxSim)/thetaMax) # Find energy to find thetaMax2 - the max deflection while the force is not being applied massTotal = spacecraft.hub.mass + 2.0*spacecraft.panel1.mass yHubDotOff = X[6, int(stopTime/2/stepSize)] theta1Off = X[3, int(stopTime/2/stepSize)] theta1OffDot = X[8, int(stopTime/2/stepSize)] Rsp1DotOff = numpy.array([-spacecraft.panel1.d*theta1OffDot*numpy.sin(theta1Off), yHubDotOff + spacecraft.panel1.d*theta1OffDot*numpy.cos(theta1Off)]) vYCMOff = 1.0/massTotal*(spacecraft.hub.mass*yHubDotOff + 2*spacecraft.panel1.mass*Rsp1DotOff[1]) EnergyOff = 0.5*spacecraft.hub.mass*yHubDotOff**2 + 2*(0.5*spacecraft.panel1.mass*numpy.dot(Rsp1DotOff,Rsp1DotOff) + 0.5*spacecraft.panel1.Inertia*theta1OffDot**2 + 0.5*spacecraft.panel1.k*theta1Off**2) EnergyFinalWithoutSpring = 0.5*massTotal*vYCMOff**2 EnergyInSpringFinal = EnergyOff - EnergyFinalWithoutSpring thetaMax2 = numpy.sqrt(EnergyInSpringFinal/spacecraft.panel1.k) # Pull thetaMax2 from the sim thetaMax2Sim = max(X[3,:]) diffTheta2Max = abs((thetaMax2-thetaMax2Sim)/thetaMax2) plt.figure() plt.clf() plt.plot(time, X[3,:],'-b',label = "Lagrangian") plt.plot(theta1Out[:,0]*1e-9, theta1Out[:,1],'-r',label = "Basilisk") plt.plot([theta1Out[0,0]*1e-9, theta1Out[-1,0]*1e-9], [2*thetaSS, 2*thetaSS],'-g',label = "Theta Max") plt.plot([theta1Out[0,0]*1e-9, theta1Out[-1,0]*1e-9], [thetaMax2, thetaMax2],'-k',label = "Theta Max 2") plt.xlabel('time (s)') plt.ylabel('theta (rad)') plt.legend(loc ='upper left',numpoints = 1) PlotName = "MaxThetaWhileForcing" PlotTitle = "Max Theta While Forcing" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) # Write Results to tex snippet snippetName = "FrequencyResults" texSnippet = str(omegaAnalyticalHz) + " & " + str(freqHz) + " & " + str(diffFreq) unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path) snippetName = "Theta1Results" texSnippet = str(thetaMax) + " & " + str(thetaMaxSim) + " & " + str(diffThetaMax) unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path) snippetName = "Theta2Results" texSnippet = str(thetaMax2) + " & " + str(thetaMax2Sim) + " & " + str(diffTheta2Max) unitTestSupport.writeTeXSnippet(snippetName, texSnippet, path) if show_plots: plt.show() plt.close("all") accuracy = 5e-3 if abs((freqHz - omegaAnalyticalHz)/omegaAnalyticalHz) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated theta max test failed frequency comparison ") if abs((thetaMax - thetaMaxSim)/thetaMax) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated theta max test failed max comparison ") if abs((thetaMax2 - thetaMax2Sim)/thetaMax2) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated theta max test failed max 2 comparison ") if testFailCount == 0: print("PASSED: " + "Hinged Rigid Body Frequency and Amplitude Integrated test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def hingedRigidBodyMotorTorque(show_plots, useScPlus): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages if useScPlus: scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" else: scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" scObject.primaryCentralSpacecraft.spacecraftName = scObject.ModelTag unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.01) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 0.0 unitTestSim.panel1.c = 0.0 unitTestSim.panel1.r_HB_B = [[0.5], [0.0], [1.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel1.thetaInit = 0 * numpy.pi / 180.0 unitTestSim.panel1.thetaDotInit = 0.0 unitTestSim.panel1.ModelTag = "panel1" # set a fixed motor torque message motorMsgData = messaging.ArrayMotorTorqueMsgPayload() motorMsgData.motorTorque = [2.0] motorMsg = messaging.ArrayMotorTorqueMsg().write(motorMsgData) unitTestSim.panel1.motorTorqueInMsg.subscribeTo(motorMsg) # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 0.0 unitTestSim.panel2.c = 0.0 unitTestSim.panel2.r_HB_B = [[-0.5], [0.0], [1.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] unitTestSim.panel2.thetaInit = 0.0 * macros.D2R unitTestSim.panel2.thetaDotInit = 0.0 unitTestSim.panel2.ModelTag = "panel2" # Add panels to spaceCraft scObjectPrimary = scObject if not useScPlus: scObjectPrimary = scObject.primaryCentralSpacecraft scObjectPrimary.addStateEffector(unitTestSim.panel1) scObjectPrimary.addStateEffector(unitTestSim.panel2) # Define mass properties of the rigid part of the spacecraft scObjectPrimary.hub.mHub = 750.0 scObjectPrimary.hub.r_BcB_B = [[0.0], [0.0], [1.0]] scObjectPrimary.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObjectPrimary.hub.r_CN_NInit = [[0.0], [0.0], [0.0]] scObjectPrimary.hub.v_CN_NInit = [[0.0], [0.0], [0.0]] scObjectPrimary.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObjectPrimary.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) if not useScPlus: scStateMsg = scObject.primaryCentralSpacecraft.scStateOutMsg else: scStateMsg = scObject.scStateOutMsg dataLog = scStateMsg.recorder() dataPanel1 = unitTestSim.panel1.hingedRigidBodyOutMsg.recorder() dataPanel2 = unitTestSim.panel2.hingedRigidBodyOutMsg.recorder() dataPanel1Log = unitTestSim.panel1.hingedRigidBodyConfigLogOutMsg.recorder() dataPanel2Log = unitTestSim.panel2.hingedRigidBodyConfigLogOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) unitTestSim.AddModelToTask(unitTaskName, dataPanel1) unitTestSim.AddModelToTask(unitTaskName, dataPanel2) unitTestSim.AddModelToTask(unitTaskName, dataPanel1Log) unitTestSim.AddModelToTask(unitTaskName, dataPanel2Log) if useScPlus: scLog = scObject.logger("totRotAngMomPntC_N") else: scLog = pythonVariableLogger.PythonVariableLogger({ "totRotAngMomPntC_N": lambda _: scObject.primaryCentralSpacecraft.totRotAngMomPntC_N }) unitTestSim.AddModelToTask(unitTaskName, scLog) unitTestSim.InitializeSimulation() stopTime = 10.0 unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() rOut_CN_N = dataLog.r_CN_N vOut_CN_N = dataLog.v_CN_N sigma_BN = dataLog.sigma_BN theta1 = dataPanel1.theta theta2 = dataPanel2.theta rB1N = dataPanel1Log.r_BN_N[0] vB1N = dataPanel1Log.v_BN_N[0] sB1N = dataPanel1Log.sigma_BN[0] oB1N = dataPanel1Log.omega_BN_B[0] rB2N = dataPanel2Log.r_BN_N[0] vB2N = dataPanel2Log.v_BN_N[0] sB2N = dataPanel2Log.sigma_BN[0] oB2N = dataPanel2Log.omega_BN_B[0] rotAngMom_N = unitTestSupport.addTimeColumn(scLog.times(), scLog.totRotAngMomPntC_N) # Get the last sigma and position dataPos = [rOut_CN_N[-1]] truePos = [[0., 0., 0.]] initialRotAngMom_N = [[rotAngMom_N[0, 1], rotAngMom_N[0, 2], rotAngMom_N[0, 3]]] finalRotAngMom = [rotAngMom_N[-1]] plt.close("all") plt.figure() plt.clf() plt.plot(rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 1] - rotAngMom_N[0, 1]) , rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 2] - rotAngMom_N[0, 2]) , rotAngMom_N[:, 0] * 1e-9, (rotAngMom_N[:, 3] - rotAngMom_N[0, 3]) ) plt.xlabel('time (s)') plt.ylabel('Ang. Momentum Difference') plt.figure() plt.clf() plt.plot(dataLog.times() * 1e-9, vOut_CN_N[:, 0], dataLog.times() * 1e-9, vOut_CN_N[:, 1], dataLog.times() * 1e-9, vOut_CN_N[:, 2]) plt.xlabel('time (s)') plt.ylabel('m/s') plt.figure() plt.clf() plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 0], color=unitTestSupport.getLineColor(0, 3), label=r'$\sigma_{1}$') plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 1], color=unitTestSupport.getLineColor(1, 3), label=r'$\sigma_{2}$') plt.plot(dataLog.times() * macros.NANO2SEC, sigma_BN[:, 2], color=unitTestSupport.getLineColor(2, 3), label=r'$\sigma_{3}$') plt.legend(loc='lower right') plt.xlabel('time (s)') plt.ylabel(r'MRP $\sigma_{B/N}$') plt.figure() plt.clf() plt.plot(dataPanel1.times() * macros.NANO2SEC, theta1*macros.R2D, color=unitTestSupport.getLineColor(0, 3), label=r'$\theta_{1}$') plt.plot(dataPanel2.times() * macros.NANO2SEC, theta2*macros.R2D, color=unitTestSupport.getLineColor(1, 3), label=r'$\theta_{2}$') plt.legend(loc='lower right') plt.xlabel('time (s)') plt.ylabel('Hinge Angles [deg]') if show_plots: plt.show() plt.close("all") accuracy = 1e-10 for i in range(0, len(truePos)): # check a vector values if not unitTestSupport.isArrayEqual(dataPos[i], truePos[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed position test") finalRotAngMom = numpy.delete(finalRotAngMom, 0, axis=1) # remove time column for i in range(0, len(initialRotAngMom_N)): # check a vector values if not unitTestSupport.isArrayEqual(finalRotAngMom[i], initialRotAngMom_N[i], 3, accuracy): testFailCount += 1 testMessages.append( "FAILED: Hinged Rigid Body integrated test failed rotational angular momentum unit test") # check config log messages if not unitTestSupport.isArrayEqual(rB1N, [2.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 r_BN_N config log test") if not unitTestSupport.isArrayEqual(vB1N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 v_BN_N config log test") if not unitTestSupport.isArrayEqual(sB1N, [0.0, 0, 1.0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 sigma_BN config log test") if not unitTestSupport.isArrayEqual(oB1N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 1 omega_BN_B config log test") if not unitTestSupport.isArrayEqual(rB2N, [-2.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 r_BN_N config log test") if not unitTestSupport.isArrayEqual(vB2N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 v_BN_N config log test") if not unitTestSupport.isArrayEqual(sB2N, [0.0, 0, 0.0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 sigma_BN config log test") if not unitTestSupport.isArrayEqual(oB2N, [0.0, 0, 0], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test failed panel 2 omega_BN_B config log test") if testFailCount == 0: print("PASSED: " + " Hinged Rigid Body integrated test with motor torques") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def hingedRigidBodyLagrangVsBasilisk(show_plots): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages scObject = spacecraftSystem.SpacecraftSystem() scObject.ModelTag = "spacecraftBody" unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread stepSize = 0.1 testProcessRate = macros.sec2nano(stepSize) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) unitTestSim.panel1 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() unitTestSim.panel2 = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector() # Define Variable for panel 1 unitTestSim.panel1.mass = 100.0 unitTestSim.panel1.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel1.d = 1.5 unitTestSim.panel1.k = 5000.0 unitTestSim.panel1.c = 75 unitTestSim.panel1.r_HB_B = [[0.5], [1.0], [0.0]] unitTestSim.panel1.dcm_HB = [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]] unitTestSim.panel1.thetaInit = 0.0 unitTestSim.panel1.thetaDotInit = 0.0 # Define Variables for panel 2 unitTestSim.panel2.mass = 100.0 unitTestSim.panel2.IPntS_S = [[100.0, 0.0, 0.0], [0.0, 50.0, 0.0], [0.0, 0.0, 50.0]] unitTestSim.panel2.d = 1.5 unitTestSim.panel2.k = 5000.0 unitTestSim.panel2.c = 75 unitTestSim.panel2.r_HB_B = [[-0.5], [1.0], [0.0]] unitTestSim.panel2.dcm_HB = [[1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0]] unitTestSim.panel2.thetaInit = 0.0 unitTestSim.panel2.thetaDotInit = 0.0 # Add panels to spaceCraft scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel1) scObject.primaryCentralSpacecraft.addStateEffector(unitTestSim.panel2) # Define force and torque momentArm1_B = numpy.array([0.05, 0.0, 0.0]) force1_B = numpy.array([0.2, 0.7, 0.0]) torque1_B = numpy.cross(momentArm1_B,force1_B) momentArm2_B = numpy.array([-0.03, 0.0, 0.0]) force2_B = numpy.array([0.0, 1.0, 0.0]) torque2_B = numpy.cross(momentArm2_B,force2_B) # Add external force and torque extFTObject = extForceTorque.ExtForceTorque() extFTObject.ModelTag = "externalDisturbance" extFTObject.extForce_B = [[force1_B[0]], [force1_B[1]], [force1_B[2]]] extFTObject.extTorquePntB_B = [[torque1_B[0]], [torque1_B[1]], [torque1_B[2]]] scObject.primaryCentralSpacecraft.addDynamicEffector(extFTObject) unitTestSim.AddModelToTask(unitTaskName, extFTObject) # Define mass properties of the rigid part of the spacecraft scObject.primaryCentralSpacecraft.hub.mHub = 750.0 scObject.primaryCentralSpacecraft.hub.r_BcB_B = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]] # Set the initial values for the states scObject.primaryCentralSpacecraft.hub.r_CN_NInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.v_CN_NInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.sigma_BNInit = [[0.0], [0.0], [0.0]] scObject.primaryCentralSpacecraft.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, scObject) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel1) unitTestSim.AddModelToTask(unitTaskName, unitTestSim.panel2) dataLog = scObject.primaryCentralSpacecraft.scStateOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) stateLog = pythonVariableLogger.PythonVariableLogger({ "theta1": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta1').getState(), "theta2": lambda _: scObject.dynManager.getStateObject('spacecrafthingedRigidBodyTheta2').getState(), }) unitTestSim.AddModelToTask(unitTaskName, stateLog) unitTestSim.InitializeSimulation() # Define times that the new forces will be applies force1OffTime = 5.0 force2OnTime = 11.0 force2OffTime = 18.0 stopTime = 20.0 unitTestSim.ConfigureStopTime(macros.sec2nano(force1OffTime)) unitTestSim.ExecuteSimulation() # Turn force1 off extFTObject.extForce_B = [[0.0], [0.0], [0.0]] extFTObject.extTorquePntB_B = [[0.0], [0.0], [0.0]] unitTestSim.ConfigureStopTime(macros.sec2nano(force2OnTime)) unitTestSim.ExecuteSimulation() # Turn force2 on extFTObject.extForce_B = [[force2_B[0]], [force2_B[1]], [force2_B[2]]] extFTObject.extTorquePntB_B = [[torque2_B[0]], [torque2_B[1]], [torque2_B[2]]] unitTestSim.ConfigureStopTime(macros.sec2nano(force2OffTime)) unitTestSim.ExecuteSimulation() # Turn force2 off and finish sim extFTObject.extForce_B = [[0.0], [0.0], [0.0]] extFTObject.extTorquePntB_B = [[0.0], [0.0], [0.0]] unitTestSim.ConfigureStopTime(macros.sec2nano(stopTime)) unitTestSim.ExecuteSimulation() theta1Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta1) theta2Out = unitTestSupport.addTimeColumn(stateLog.times(), stateLog.theta2) rOut_BN_N = dataLog.r_BN_N sigmaOut_BN = dataLog.sigma_BN thetaOut = 4.0*numpy.arctan(sigmaOut_BN[:,2]) # Developing the lagrangian result # Define initial values spacecraft = spacecraftClass() spacecraft.hub.mass = scObject.primaryCentralSpacecraft.hub.mHub spacecraft.hub.Inertia = scObject.primaryCentralSpacecraft.hub.IHubPntBc_B[2][2] # Define variables for panel1 spacecraft.panel1.mass = unitTestSim.panel1.mass spacecraft.panel1.Inertia = unitTestSim.panel1.IPntS_S[1][1] spacecraft.panel1.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel1.r_HB_B)) spacecraft.panel1.beta = numpy.arctan2(unitTestSim.panel1.r_HB_B[1][0],unitTestSim.panel1.r_HB_B[0][0]) spacecraft.panel1.thetaH = 0.0 spacecraft.panel1.d = unitTestSim.panel1.d spacecraft.panel1.k = unitTestSim.panel1.k spacecraft.panel1.c = unitTestSim.panel1.c # Define variables for panel2 spacecraft.panel2.mass = unitTestSim.panel2.mass spacecraft.panel2.Inertia = unitTestSim.panel2.IPntS_S[1][1] spacecraft.panel2.Rhinge = numpy.linalg.norm(numpy.asarray(unitTestSim.panel2.r_HB_B)) spacecraft.panel2.beta = numpy.arctan2(unitTestSim.panel2.r_HB_B[1][0],unitTestSim.panel2.r_HB_B[0][0]) spacecraft.panel2.thetaH = numpy.pi spacecraft.panel2.d = unitTestSim.panel2.d spacecraft.panel2.k = unitTestSim.panel2.k spacecraft.panel2.c = unitTestSim.panel2.c # Define initial conditions of the sim time = numpy.arange(0.0,stopTime + stepSize,stepSize).flatten() x0 = numpy.zeros(10) x0[3] = unitTestSim.panel1.thetaInit x0[4] = -unitTestSim.panel2.thetaInit X = numpy.zeros((len(x0),len(time))) X[:,0] = x0 for j in range (1,(len(time))): if time[j-1] < force1OffTime: spacecraft.xThrust_B = force1_B[0] spacecraft.yThrust_B = force1_B[1] spacecraft.Torque = torque1_B[2] elif time[j-1] >= force2OnTime and time[j-1] < force2OffTime: spacecraft.xThrust_B = force2_B[0] spacecraft.yThrust_B = force2_B[1] spacecraft.Torque = torque2_B[2] else: spacecraft.xThrust_B = 0.0 spacecraft.yThrust_B = 0.0 spacecraft.Torque = 0.0 X[:, j] = rk4(planarFlexFunction, X[:, j-1], stepSize, time[j-1], spacecraft) plt.figure() plt.clf() plt.plot(time, X[0,:],'-b',label = "Lagrangian") plt.plot(dataLog.times()*1e-9, (rOut_BN_N[:,0]-rOut_BN_N[:,0]),'-r',label = "Basilisk") plt.plot([time[25], time[75], time[125], time[175]], [X[0,25], X[0,75], X[0,125], X[0,175],],'ok',label = "Test Points") plt.xlabel('time (s)') plt.ylabel('x position (m)') plt.legend(loc ='upper left',numpoints = 1) PlotName = "XPositionLagrangianVsBasilisk" PlotTitle = "X Position Lagrangian Vs Basilisk" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(time, X[1,:],'-b',label = "Lagrangian") plt.plot(dataLog.times()*1e-9, (rOut_BN_N[:,1]-rOut_BN_N[:,1]),'r',label = "Basilisk") plt.plot([time[25], time[75], time[125], time[175]], [X[1,25], X[1,75], X[1,125], X[1,175],],'ok',label = "Test Points") plt.xlabel('time (s)') plt.ylabel('y position (m)') plt.legend(loc ='upper left',numpoints = 1) PlotName = "YPositionLagrangianVsBasilisk" PlotTitle = "Y Position Lagrangian Vs Basilisk" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(time, X[2,:],'-b',label = "Lagrangian") plt.plot(dataLog.times()*1e-9, thetaOut,'-r',label = "Basilisk") plt.plot([time[25], time[75], time[125], time[175]], [X[2,25], X[2,75], X[2,125], X[2,175],],'ok',label = "Test Points") plt.xlabel('time (s)') plt.ylabel('theta (rad)') plt.legend(loc ='upper left',numpoints = 1) PlotName = "ThetaLagrangianVsBasilisk" PlotTitle = "Theta Lagrangian Vs Basilisk" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(time, X[3,:],'-b',label = "Lagrangian") plt.plot(theta1Out[:,0]*1e-9, theta1Out[:,1],'-r',label = "Basilisk") plt.plot([time[25], time[75], time[125], time[175]], [X[3,25], X[3,75], X[3,125], X[3,175],],'ok',label = "Test Points") plt.xlabel('time (s)') plt.ylabel('theta 1 (rad)') plt.legend(loc ='upper left',numpoints = 1) PlotName = "Theta1LagrangianVsBasilisk" PlotTitle = "Theta 1 Position Lagrangian Vs Basilisk" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) plt.figure() plt.clf() plt.plot(time, -X[4,:],'-b',label = "Lagrangian") plt.plot(theta2Out[:,0]*1e-9, theta2Out[:,1],'-r',label = "Basilisk") plt.plot([time[25], time[75], time[125], time[175]], [-X[4,25], -X[4,75], -X[4,125], -X[4,175],],'ok',label = "Test Points") plt.xlabel('time (s)') plt.ylabel('theta 2 (rad)') plt.legend(loc ='lower left',numpoints = 1) PlotName = "Theta2LagrangianVsBasilisk" PlotTitle = "Theta 2 Lagrangian Vs Basilisk" format = r"width=0.8\textwidth" unitTestSupport.writeFigureLaTeX(PlotName, PlotTitle, plt, format, path) if show_plots: plt.show() plt.close("all") accuracy = 1e-10 timeList = [25, 75, 125, 175] for i in timeList: if abs(X[0,i] - (rOut_BN_N[i,0]-rOut_BN_N[0,0])) > accuracy: print(abs(X[0,i] - (rOut_BN_N[i,0]-rOut_BN_N[0,0]))) testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed x position comparison ") if abs(X[1,i] - (rOut_BN_N[i,1]-rOut_BN_N[0,1])) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed y position comparison ") if abs(X[2,i] - thetaOut[i]) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed theta comparison ") if abs(X[3,i] - theta1Out[i,1]) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed theta 1 comparison ") if abs(-X[4,i] - theta2Out[i,1]) > accuracy: testFailCount += 1 testMessages.append("FAILED: Hinged Rigid Body integrated test Lagrangian vs. Basilisk failed theta 2 comparison ") if testFailCount == 0: print("PASSED: " + " Hinged Rigid Body Transient Integrated test") assert testFailCount < 1, testMessages # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def planarFlexFunction(x, t, variables): theta = x[2] theta1 = x[3] theta2 = x[4] xHubDot = x[5] yHubDot = x[6] thetaDot = x[7] theta1Dot = x[8] theta2Dot = x[9] # Define variables for hub mHub = variables.hub.mass IHub = variables.hub.Inertia # Define variables for panel1 mSP1 = variables.panel1.mass ISP1 = variables.panel1.Inertia Rhinge1 = variables.panel1.Rhinge beta1 = variables.panel1.beta thetaH1 = variables.panel1.thetaH d1 = variables.panel1.d k1 = variables.panel1.k c1 = variables.panel1.c # Define variables for panel2 mSP2 = variables.panel2.mass ISP2 = variables.panel2.Inertia Rhinge2 = variables.panel2.Rhinge beta2 = variables.panel2.beta thetaH2 = variables.panel2.thetaH d2 = variables.panel2.d k2 = variables.panel2.k c2 = variables.panel2.c Tx_B = variables.xThrust_B Ty_B = variables.yThrust_B Torque = variables.Torque # Convert Tx_B and Ty_B to the inertial frame dcm_BN = numpy.array([[numpy.cos(theta), numpy.sin(theta)], [-numpy.sin(theta), numpy.cos(theta)]]) Thrust_N = numpy.dot(dcm_BN.transpose(),numpy.array([[Tx_B],[Ty_B]])) Tx = Thrust_N[0,0] Ty = Thrust_N[1,0] matrixA = numpy.zeros((5,5)) vectorB = numpy.zeros(5) # Populate X Translation Equation matrixA[0,0] = 1.0 matrixA[0,1] = 0.0 matrixA[0,2] = -1/(mHub + mSP1 + mSP2)*(mSP1*Rhinge1*numpy.sin(beta1 + theta) + mSP2*Rhinge2*numpy.sin(beta2 + theta) + d1*mSP1*numpy.sin(thetaH1 + theta + theta1) + d2*mSP2*numpy.sin(thetaH2 + theta + theta2)) matrixA[0,3] = -1/(mHub + mSP1 + mSP2)*(d1*mSP1*numpy.sin(thetaH1 + theta + theta1)) matrixA[0,4] = -1/(mHub + mSP1 + mSP2)*(d2*mSP2*numpy.sin(thetaH2 + theta + theta2)) vectorB[0] = 1/(mHub + mSP1 + mSP2)*(Tx + mSP1*Rhinge1*numpy.cos(beta1 + theta)*thetaDot**2 + mSP2*Rhinge2*numpy.cos(beta2 + theta)*thetaDot**2 + d1*mSP1*numpy.cos(thetaH1 + theta + theta1)*thetaDot**2 + d2*mSP2*numpy.cos(thetaH2 + theta + theta2)*thetaDot**2 + 2*d1*mSP1*numpy.cos(thetaH1 + theta + theta1)*thetaDot*theta1Dot + d1*mSP1*numpy.cos(thetaH1 + theta + theta1)*theta1Dot**2 + 2*d2*mSP2*numpy.cos(thetaH2 + theta + theta2)*thetaDot*theta2Dot + d2*mSP2*numpy.cos(thetaH2 + theta + theta2)*theta2Dot**2) # Populate Y Translation Equation matrixA[1,0] = 0.0 matrixA[1,1] = 1.0 matrixA[1,2] = 1/(mHub + mSP1 + mSP2)*(mSP1*Rhinge1*numpy.cos(beta1 + theta) + mSP2*Rhinge2*numpy.cos(beta2 + theta) + d1*mSP1*numpy.cos(thetaH1 + theta + theta1) + d2*mSP2*numpy.cos(thetaH2 + theta + theta2)) matrixA[1,3] = 1/(mHub + mSP1 + mSP2)*(d1*mSP1*numpy.cos(thetaH1 + theta + theta1)) matrixA[1,4] = 1/(mHub + mSP1 + mSP2)*(d2*mSP2*numpy.cos(thetaH2 + theta + theta2)) vectorB[1] = 1/(mHub + mSP1 + mSP2)*(Ty + mSP1*Rhinge1*numpy.sin(beta1 + theta)*thetaDot**2 + mSP2*Rhinge2*numpy.sin(beta2 + theta)*thetaDot**2 + d1*mSP1*numpy.sin(thetaH1 + theta + theta1)*thetaDot**2 + d2*mSP2*numpy.sin(thetaH2 + theta + theta2)*thetaDot**2 + 2*d1*mSP1*numpy.sin(thetaH1 + theta + theta1)*thetaDot*theta1Dot + d1*mSP1*numpy.sin(thetaH1 + theta + theta1)*theta1Dot**2 + 2*d2*mSP2*numpy.sin(thetaH2 + theta + theta2)*thetaDot*theta2Dot + d2*mSP2*numpy.sin(thetaH2 + theta + theta2)*theta2Dot**2) # Populate theta Equation matrixA[2,0] = -1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(mSP1*Rhinge1*numpy.sin(beta1 + theta) + mSP2*Rhinge2*numpy.sin(beta2 + theta) + d1*mSP1*numpy.sin(thetaH1 + theta + theta1) + d2*mSP2*numpy.sin(thetaH2 + theta + theta2)) matrixA[2,1] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(mSP1*Rhinge1*numpy.cos(beta1 + theta) + mSP2*Rhinge2*numpy.cos(beta2 + theta) + d1*mSP1*numpy.cos(thetaH1 + theta + theta1) + d2*mSP2*numpy.cos(thetaH2 + theta + theta2)) matrixA[2,2] = 1.0 matrixA[2,3] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(ISP1 + d1**2*mSP1 + d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1)) matrixA[2,4] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(ISP2 + d2**2*mSP2 + d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2)) vectorB[2] = 1/(IHub + ISP1 + ISP2 + d1**2*mSP1 + d2**2*mSP2 + mSP1*Rhinge1**2 + mSP2*Rhinge2**2 + 2*d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1) + 2*d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2))*(Torque - 2*d1*mSP1*Rhinge1*numpy.sin(beta1 - thetaH1 - theta1)*thetaDot*theta1Dot - d1*mSP1*Rhinge1*numpy.sin(beta1 - thetaH1 - theta1)*theta1Dot**2 - 2*d2*mSP2*Rhinge2*numpy.sin(beta2 - thetaH2 - theta2)*thetaDot*theta2Dot - d2*mSP2*Rhinge2*numpy.sin(beta2 - thetaH2 - theta2)*theta2Dot**2) # Populate theta1 Equation matrixA[3,0] = -1/(ISP1 + d1**2*mSP1)*(d1*mSP1*numpy.sin(thetaH1 + theta + theta1)) matrixA[3,1] = 1/(ISP1 + d1**2*mSP1)*(d1*mSP1*numpy.cos(thetaH1 + theta + theta1)) matrixA[3,2] = 1/(ISP1 + d1**2*mSP1)*(ISP1 + d1**2*mSP1 + d1*mSP1*Rhinge1*numpy.cos(beta1 - thetaH1 - theta1)) matrixA[3,3] = 1.0 matrixA[3,4] = 0.0 vectorB[3] = 1/(ISP1 + d1**2*mSP1)*(-k1*theta1 + d1*mSP1*Rhinge1*numpy.sin(beta1 - thetaH1 - theta1)*thetaDot**2 - c1*theta1Dot) # Populate theta2 Equation matrixA[4,0] = -1/(ISP2 + d2**2*mSP2)*(d2*mSP2*numpy.sin(thetaH2 + theta + theta2)) matrixA[4,1] = 1/(ISP2 + d2**2*mSP2)*(d2*mSP2*numpy.cos(thetaH2 + theta + theta2)) matrixA[4,2] = 1/(ISP2 + d2**2*mSP2)*(ISP2 + d2**2*mSP2 + d2*mSP2*Rhinge2*numpy.cos(beta2 - thetaH2 - theta2)) matrixA[4,3] = 0.0 matrixA[4,4] = 1.0 vectorB[4] = 1/(ISP2 + d2**2*mSP2)*(-k2*theta2 + d2*mSP2*Rhinge2*numpy.sin(beta2 - thetaH2 - theta2)*thetaDot**2 - c2*theta2Dot) Xdot = numpy.zeros(len(x)) # Populate Trivial derivatives Xdot[0] = xHubDot Xdot[1] = yHubDot Xdot[2] = thetaDot Xdot[3] = theta1Dot Xdot[4] = theta2Dot # Calculate nontrivial derivatives result = numpy.dot(numpy.linalg.inv(matrixA),vectorB) Xdot[5:10] = result return Xdot def rk4(Fn, X, h, t, varargin): k1 = h*Fn(X, t, varargin) k2 = h*Fn(X+k1/2, t+h/2, varargin) k3 = h*Fn(X+k2/2, t+h/2, varargin) k4 = h*Fn(X+k3, t+h, varargin) Z = X + (k1 + 2*k2 + 2*k3 + k4)/6.0 return Z class solarPanel: mass = 0.0 Inertia = 0.0 Rhinge = 0.0 beta = 0.0 thetaH = 0.0 d = 0.0 k = 0.0 c = 0.0 class hubClass: mass = 0.0 Inertia = 0.0 class spacecraftClass: panel1 = solarPanel() panel2 = solarPanel() hub = hubClass() xThrust_B = 0.0 yThrust_B = 0.0 Torque = 0.0 def newtonRapshon(funcAndDervi,guess,tolerance,variables): xOld = guess for i in range(1,101): fx, fPrimex = funcAndDervi(xOld, variables) xNew = xOld - fx/fPrimex if abs(xNew - xOld) < tolerance: break xOld = xNew return xNew def boxAndWingsFandFPrime(theta,variables): # Define variables F = variables.F mSC = variables.mSC k = variables.k mSP = variables.mSP d = variables.d aSP = F/mSC fX = k*theta + mSP*aSP*d*numpy.cos(theta) fPrimeX = k - mSP*aSP*d*numpy.sin(theta) return fX, fPrimeX class boxAndWingParameters: F = 0 mSC = 0 k = 0 mSP = 0 d = 0 if __name__ == "__main__": # test_hingedRigidBodyGravity(True) # test_hingedRigidBodyNoGravity(True) # test_hingedRigidBodyNoGravityDamping(True) # test_hingedRigidBodyThetaSS(True) # test_hingedRigidBodyFrequencyAmp(True) # test_hingedRigidBodyMotorTorque(True, True) hingedRigidBodyLagrangVsBasilisk(True)