#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: eulerRotation
# Author: Mar Cols
# Creation Date: January 22, 2016
#
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import eulerRotation # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros as mc
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("function", ["run"
, "run2"
])
def test_all_test_eulerRotation(show_plots, function):
"""Module Unit Test"""
[testResults, testMessage] = eval(function + '(show_plots)')
assert testResults < 1, testMessage
def run(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Test times
updateTime = 0.5 # update process rate update time
totalTestSimTime = 1.5
# Create test thread
testProcessRate = mc.sec2nano(updateTime)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = eulerRotation.eulerRotation()
module.ModelTag = "eulerRotation"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
angleSet = np.array([0.0, 90.0, 0.0]) * mc.D2R
module.angleSet = angleSet
angleRates = np.array([0.1, 0.0, 0.0]) * mc.D2R
module.angleRates = angleRates
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Reference Frame Message
#
RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateOutData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.1, 0.0, 0.0])
RefStateOutData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.domega_RN_N = domega_R0N_N
attRefInMsg = messaging.AttRefMsg().write(RefStateOutData)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attRefOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.attRefInMsg.subscribeTo(attRefInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
accuracy = 1e-12
#
# check sigma_RN
#
moduleOutput = dataLog.sigma_RN
# set the filtered output truth states
trueVector = [
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193144351314, 0.607931107381, 0.386360300559],
[-0.193257454832, 0.607813704445, 0.386658117585]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "sigma_RN Set",
testFailCount, testMessages)
# print '\n sigma_RN = ', moduleOutput[:, 1:], '\n'
#
# check omega_RN_N
#
moduleOutput = dataLog.omega_RN_N
# set the filtered output truth states
trueVector = [
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "omega_RN_N Vector",
testFailCount, testMessages)
#
# check domega_RN_N
#
moduleOutput = dataLog.domega_RN_N
# set the filtered output truth states
trueVector = [
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "domega_RN_N Vector",
testFailCount, testMessages)
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
# if show_plots:
# # plot a sample variable.
# plt.figure(1)
# plt.plot(variableState[:,0]*macros.NANO2SEC, variableState[:,1], label='Sample Variable')
# plt.legend(loc='upper left')
# plt.xlabel('Time [s]')
# plt.ylabel('Variable Description [unit]')
# plt.show()
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
def run2(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Test times
updateTime = 0.5 # update process rate update time
totalTestSimTime = 1.5
# Create test thread
testProcessRate = mc.sec2nano(updateTime)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = eulerRotation.eulerRotation()
module.ModelTag = "eulerRotation"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize the test module configuration data
angleSet = np.array([0.0, 90.0, 0.0]) * mc.D2R
module.angleSet = angleSet
angleRates = np.array([0.1, 0.0, 0.0]) * mc.D2R
module.angleRates = angleRates
# Create input message and size it because the regular creator of that message
# is not part of the test.
#
# Reference Frame Message
#
RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message
sigma_R0N = np.array([0.1, 0.2, 0.3])
RefStateOutData.sigma_RN = sigma_R0N
omega_R0N_N = np.array([0.1, 0.0, 0.0])
RefStateOutData.omega_RN_N = omega_R0N_N
domega_R0N_N = np.array([0.0, 0.0, 0.0])
RefStateOutData.domega_RN_N = domega_R0N_N
attRefMsg = messaging.AttRefMsg().write(RefStateOutData)
# Set the desired state and rate to 0.
desiredAtt = messaging.AttStateMsgPayload()
desiredState = np.array([0, 0, 0])
desiredAtt.state = desiredState
desiredRate = np.array([0, 0, 0])
desiredAtt.rate = desiredRate
desInMsg = messaging.AttStateMsg().write(desiredAtt)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attRefOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.attRefInMsg.subscribeTo(attRefMsg)
module.desiredAttInMsg.subscribeTo(desInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
# This pulls the actual data log from the simulation run.
# Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them)
accuracy = 1e-12
#
# check sigma_RN
#
moduleOutput = dataLog.sigma_RN
# set the filtered output truth states
trueVector = [
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193031238249, 0.608048400483, 0.386062476497],
[-0.193144351314, 0.607931107381, 0.386360300559],
[-0.193257454832, 0.607813704445, 0.386658117585]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "sigma_RN Set",
testFailCount, testMessages)
# print '\n sigma_RN = ', moduleOutput[:, 1:], '\n'
#
# check omega_RN_N
#
moduleOutput = dataLog.omega_RN_N
# set the filtered output truth states
trueVector = [
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578],
[0.101246280045, 0.000182644489, 0.001208139578]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "omega_RN_N Vector",
testFailCount, testMessages)
#
# check domega_RN_N
#
moduleOutput = dataLog.domega_RN_N
# set the filtered output truth states
trueVector = [
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05],
[0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05]
]
testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput,
accuracy, "domega_RN_N Vector",
testFailCount, testMessages)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_all_test_eulerRotation(False)
# run(False)