Source code for test_eulerRotation

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        eulerRotation
#   Author:             Mar Cols
#   Creation Date:      January 22, 2016
#

import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import eulerRotation  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros as mc
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

[docs] @pytest.mark.parametrize("function", ["run" , "run2" ]) def test_all_test_eulerRotation(show_plots, function): """Module Unit Test""" [testResults, testMessage] = eval(function + '(show_plots)') assert testResults < 1, testMessage
def run(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Test times updateTime = 0.5 # update process rate update time totalTestSimTime = 1.5 # Create test thread testProcessRate = mc.sec2nano(updateTime) testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = eulerRotation.eulerRotation() module.ModelTag = "eulerRotation" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data angleSet = np.array([0.0, 90.0, 0.0]) * mc.D2R module.angleSet = angleSet angleRates = np.array([0.1, 0.0, 0.0]) * mc.D2R module.angleRates = angleRates # Create input message and size it because the regular creator of that message # is not part of the test. # # Reference Frame Message # RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message sigma_R0N = np.array([0.1, 0.2, 0.3]) RefStateOutData.sigma_RN = sigma_R0N omega_R0N_N = np.array([0.1, 0.0, 0.0]) RefStateOutData.omega_RN_N = omega_R0N_N domega_R0N_N = np.array([0.0, 0.0, 0.0]) RefStateOutData.domega_RN_N = domega_R0N_N attRefInMsg = messaging.AttRefMsg().write(RefStateOutData) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.attRefOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.attRefInMsg.subscribeTo(attRefInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) accuracy = 1e-12 # # check sigma_RN # moduleOutput = dataLog.sigma_RN # set the filtered output truth states trueVector = [ [-0.193031238249, 0.608048400483, 0.386062476497], [-0.193031238249, 0.608048400483, 0.386062476497], [-0.193144351314, 0.607931107381, 0.386360300559], [-0.193257454832, 0.607813704445, 0.386658117585] ] testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "sigma_RN Set", testFailCount, testMessages) # print '\n sigma_RN = ', moduleOutput[:, 1:], '\n' # # check omega_RN_N # moduleOutput = dataLog.omega_RN_N # set the filtered output truth states trueVector = [ [0.101246280045, 0.000182644489, 0.001208139578], [0.101246280045, 0.000182644489, 0.001208139578], [0.101246280045, 0.000182644489, 0.001208139578], [0.101246280045, 0.000182644489, 0.001208139578] ] testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "omega_RN_N Vector", testFailCount, testMessages) # # check domega_RN_N # moduleOutput = dataLog.domega_RN_N # set the filtered output truth states trueVector = [ [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05], [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05], [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05], [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05] ] testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "domega_RN_N Vector", testFailCount, testMessages) # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures # if show_plots: # # plot a sample variable. # plt.figure(1) # plt.plot(variableState[:,0]*macros.NANO2SEC, variableState[:,1], label='Sample Variable') # plt.legend(loc='upper left') # plt.xlabel('Time [s]') # plt.ylabel('Variable Description [unit]') # plt.show() # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] def run2(show_plots): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Test times updateTime = 0.5 # update process rate update time totalTestSimTime = 1.5 # Create test thread testProcessRate = mc.sec2nano(updateTime) testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = eulerRotation.eulerRotation() module.ModelTag = "eulerRotation" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data angleSet = np.array([0.0, 90.0, 0.0]) * mc.D2R module.angleSet = angleSet angleRates = np.array([0.1, 0.0, 0.0]) * mc.D2R module.angleRates = angleRates # Create input message and size it because the regular creator of that message # is not part of the test. # # Reference Frame Message # RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message sigma_R0N = np.array([0.1, 0.2, 0.3]) RefStateOutData.sigma_RN = sigma_R0N omega_R0N_N = np.array([0.1, 0.0, 0.0]) RefStateOutData.omega_RN_N = omega_R0N_N domega_R0N_N = np.array([0.0, 0.0, 0.0]) RefStateOutData.domega_RN_N = domega_R0N_N attRefMsg = messaging.AttRefMsg().write(RefStateOutData) # Set the desired state and rate to 0. desiredAtt = messaging.AttStateMsgPayload() desiredState = np.array([0, 0, 0]) desiredAtt.state = desiredState desiredRate = np.array([0, 0, 0]) desiredAtt.rate = desiredRate desInMsg = messaging.AttStateMsg().write(desiredAtt) # Setup logging on the test module output message so that we get all the writes to it dataLog = module.attRefOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.attRefInMsg.subscribeTo(attRefMsg) module.desiredAttInMsg.subscribeTo(desInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(mc.sec2nano(totalTestSimTime)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) accuracy = 1e-12 # # check sigma_RN # moduleOutput = dataLog.sigma_RN # set the filtered output truth states trueVector = [ [-0.193031238249, 0.608048400483, 0.386062476497], [-0.193031238249, 0.608048400483, 0.386062476497], [-0.193144351314, 0.607931107381, 0.386360300559], [-0.193257454832, 0.607813704445, 0.386658117585] ] testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "sigma_RN Set", testFailCount, testMessages) # print '\n sigma_RN = ', moduleOutput[:, 1:], '\n' # # check omega_RN_N # moduleOutput = dataLog.omega_RN_N # set the filtered output truth states trueVector = [ [0.101246280045, 0.000182644489, 0.001208139578], [0.101246280045, 0.000182644489, 0.001208139578], [0.101246280045, 0.000182644489, 0.001208139578], [0.101246280045, 0.000182644489, 0.001208139578] ] testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "omega_RN_N Vector", testFailCount, testMessages) # # check domega_RN_N # moduleOutput = dataLog.domega_RN_N # set the filtered output truth states trueVector = [ [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05], [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05], [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05], [0.000000000000e+00, -1.208139577635e-04, 1.826444892823e-05] ] testFailCount, testMessages = unitTestSupport.compareArray(trueVector, moduleOutput, accuracy, "domega_RN_N Vector", testFailCount, testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_all_test_eulerRotation(False) # run(False)