Source code for test_etSphericalControl

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#


#
#   Unit Test Script
#   Module Name:        ETcontrol
#   Author:             Julian Hammerl
#   Creation Date:      May 20, 2021
#

import numpy as np
import pytest
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging  # import the message definitions
from Basilisk.fswAlgorithms import etSphericalControl  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros, RigidBodyKinematics, orbitalMotion
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.

# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_

[docs]@pytest.mark.parametrize("accuracy", [1e-8]) def test_etSphericalControl(show_plots, accuracy): # update "module" in this function name to reflect the module name r""" **Validation Test Description** The behavior of the Electrostatic Tractor Spherical Relative Motion Control is tested. The electrostatic force between the servicer and the debris is calculated using a single sphere to represent each spacecraft. The simulation is run for a single update cycle and the resulting forces and torques acting on each body are compared to hand-computed truth values. **Test Parameters** Args: accuracy (float): relative accuracy value used in the validation tests **Description of Variables Being Tested** The module output messages for the inertial control force vector and body control force vector are compared to the truth values obtained from a Matlab simulation. """ # each test method requires a single assert method to be called # pass on the testPlotFixture so that the main test function may set the DataStore attributes [testResults, testMessage] = etSphericalControlTestFunction(show_plots, accuracy) assert testResults < 1, testMessage
[docs]def etSphericalControlTestFunction(show_plots, accuracy): """Test method""" testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = etSphericalControl.etSphericalControl() module.ModelTag = "ETcontrol" # update python name of test module # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) # Initialize the test module configuration data mu = 3.986004418e14 # [m^3/s^2] Earth's gravitational parameter L0 = 20. Ki = 4e-7 Pi = 1.85 * Ki ** 0.5 module.K = [Ki, 0.0, 0.0, 0.0, Ki, 0.0, 0.0, 0.0, Ki] module.P = [Pi, 0.0, 0.0, 0.0, Pi, 0.0, 0.0, 0.0, Pi] module.L_r = 30. module.theta_r = 0. module.phi_r = 0. module.mu = mu # Create input message and size it because the regular creator of that message # is not part of the test. oe = orbitalMotion.ClassicElements() oe.a = 42164. * 1e3 # [m] geostationary orbit oe.e = 0. oe.i = 10.*macros.D2R oe.Omega = 20.*macros.D2R oe.omega = 30.*macros.D2R oe.f = 40.*macros.D2R r_TN_N, v_TN_N = orbitalMotion.elem2rv(mu, oe) servicerNavTransOutData = messaging.NavTransMsgPayload() # Create a structure for the input message servicerNavTransOutData.r_BN_N = r_TN_N servicerNavTransOutData.v_BN_N = v_TN_N servicerTransMsg = messaging.NavTransMsg().write(servicerNavTransOutData) r_DT_N = np.array([2., -L0, -3.]) # relative position between debris and servicer r_DN_N = r_TN_N + r_DT_N v_DN_N = v_TN_N debrisNavTransOutData = messaging.NavTransMsgPayload() # Create a structure for the input message debrisNavTransOutData.r_BN_N = r_DN_N debrisNavTransOutData.v_BN_N = v_DN_N debrisTransMsg = messaging.NavTransMsg().write(debrisNavTransOutData) beta_TH = [0.972960339471760, 0.107600839071972, -0.0289291519077161, 0.202319898714648] # initial EP sigma_TN = RigidBodyKinematics.EP2MRP(beta_TH) # MRP servicerNavAttOutData = messaging.NavAttMsgPayload() servicerNavAttOutData.sigma_BN = sigma_TN servicerAttMsg = messaging.NavAttMsg().write(servicerNavAttOutData) servicerConfigOutData = messaging.VehicleConfigMsgPayload() servicerConfigOutData.massSC = 500. servicerVehicleConfigMsg = messaging.VehicleConfigMsg().write(servicerConfigOutData) debrisConfigOutData = messaging.VehicleConfigMsgPayload() debrisConfigOutData.massSC = 2000. debrisVehicleConfigMsg = messaging.VehicleConfigMsg().write(debrisConfigOutData) # compute electrostatic force between servicer and debris using single sphere for both S/C R_T = 2. R_D = 3. V_T = 25000. V_D = -25000. kc = 8.9875517923e9 L = np.linalg.norm(r_DT_N) q_T = (L*(L*R_T*V_T-R_T*R_D*V_D))/(kc*(L**2.-R_T*R_D)) q_D = (L * (L * R_D * V_D - R_T * R_D * V_T)) / (kc * (L ** 2. - R_T * R_D)) Fc = kc*q_T*q_D/L**2. Fc_N = Fc*(-r_DT_N/np.linalg.norm(r_DT_N)) # electrostatic force acting on servicer eForceOutData = messaging.CmdForceInertialMsgPayload() eForceOutData.forceRequestInertial = Fc_N eForceMsg = messaging.CmdForceInertialMsg().write(eForceOutData) # Setup logging on the test module output message so that we get all the writes to it dataLogInertial = module.forceInertialOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLogInertial) dataLogBody = module.forceBodyOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLogBody) # connect the message interfaces module.servicerTransInMsg.subscribeTo(servicerTransMsg) module.debrisTransInMsg.subscribeTo(debrisTransMsg) module.servicerAttInMsg.subscribeTo(servicerAttMsg) module.servicerVehicleConfigInMsg.subscribeTo(servicerVehicleConfigMsg) module.debrisVehicleConfigInMsg.subscribeTo(debrisVehicleConfigMsg) module.eForceInMsg.subscribeTo(eForceMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() unitTestSim.TotalSim.SingleStepProcesses() # This pulls the actual data log from the simulation run. forceInertialOutput = dataLogInertial.forceRequestInertial forceBodyOutput = dataLogBody.forceRequestBody # set the filtered output truth states trueInertialVector = [[-0.00714223893615245, 0.00267752848271998, 0.000883681113161883]] trueBodyVector = [[-0.00541988234898216, 0.00542736415350300, 0.000360862543207430]] # compare the module results to the truth values for i in range(0, len(trueInertialVector)): # check vector values if not unitTestSupport.isArrayEqual(forceInertialOutput[i], trueInertialVector[i], 3, accuracy): testFailCount += 1 print(forceInertialOutput[i]) testMessages.append("FAILED: " + module.ModelTag + " Module failed " + "Inertial Force Output" + " unit test at t=" + str(forceInertialOutput[i, 0] * macros.NANO2SEC) + "sec\n") if not unitTestSupport.isArrayEqual(forceBodyOutput[i], trueBodyVector[i], 3, accuracy): testFailCount += 1 print(forceBodyOutput[i]) testMessages.append("FAILED: " + module.ModelTag + " Module failed " + "Body Force Output" + " unit test at t=" + str(forceBodyOutput[i, 0] * macros.NANO2SEC) + "sec\n") # print out success message if no error were found if testFailCount == 0: print("PASSED: " + module.ModelTag) print("This test uses an accuracy value of " + str(accuracy)) else: print("FAILED " + module.ModelTag) print(testMessages) # each test method requires a single assert method to be called # this check below just makes sure no sub-test failures were found return [testFailCount, ''.join(testMessages)]
# # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_etSphericalControl( False, # show_plots 1e-8 # accuracy )