#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: dipoleMapping
# Author: Henry Macanas
# Creation Date: 06 18, 2021
#
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
from Basilisk.architecture import bskLogging
from Basilisk.architecture import messaging # import the message definitions
from Basilisk.fswAlgorithms import dipoleMapping # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
accuracy = 1E-12
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
def test_dipoleMapping_module(): # update "module" in this function name to reflect the module name
r"""
**Validation Test Description**
This script tests the mapping of a 3x1 requested Body frame dipole,
``dipole_B``, mapped correctly to individual torque bar requests and that the
algorithm doesn't fail when the inputs are given zero values.
**Description of Variables Being Tested**
In this file we are checking the values of the output message variable:
- ``mtbDipoleCmds[MAX_EFF_CNT]``
"""
# each test method requires a single assert method to be called
# pass on the testPlotFixture so that the main test function may set the DataStore attributes
[testResults, testMessage] = dipoleMappingModuleTestFunction()
assert testResults < 1, testMessage
def dipoleMappingModuleTestFunction():
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
bskLogging.setDefaultLogLevel(bskLogging.BSK_WARNING)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.01) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Initialize module under test's config message and add module to runtime call list
module = dipoleMapping.dipoleMapping()
module.steeringMatrix = [1., 0., 0., 0., 1., 0., 0., 0., 1.]
module.ModelTag = "dipoleMapping" # update python name of test module
unitTestSim.AddModelToTask(unitTaskName, module)
# Initialize DipoleRequestBodyMsg
dipoleRequestBodyInMsgContainer = messaging.DipoleRequestBodyMsgPayload()
dipoleRequestBodyInMsgContainer.dipole_B = [1., 2., 3.]
dipoleRequestBodyInMsg = messaging.DipoleRequestBodyMsg().write(dipoleRequestBodyInMsgContainer)
# Initialize MTBArrayConfigMsg
mtbArrayConfigParamsInMsgContainer = messaging.MTBArrayConfigMsgPayload()
mtbArrayConfigParamsInMsgContainer.numMTB = 3
mtbArrayConfigParamsInMsgContainer.maxMtbDipoles = [1E3, 1E3, 1E3]
mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [1., 0., 0., 0., 1., 0., 0., 0., 1.]
mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer)
# Setup logging on the test module output message so that we get all the writes to it
resultDipoleRequestMtbOutMsg = module.dipoleRequestMtbOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, resultDipoleRequestMtbOutMsg)
# connect the message interfaces
module.dipoleRequestBodyInMsg.subscribeTo(dipoleRequestBodyInMsg)
module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg)
# Set the simulation time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.0)) # seconds to stop simulation
unitTestSim.InitializeSimulation()
'''
TEST 1:
Check that dipoles is non-zero expected value with trivial
steeringMatrix.
'''
unitTestSim.ExecuteSimulation()
expectedDipole = [0.] * messaging.MAX_EFF_CNT
expectedDipole[0:3] = [1., 2., 3.]
testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole,
resultDipoleRequestMtbOutMsg.mtbDipoleCmds[0],
accuracy,
"dipoles",
testFailCount, testMessages)
'''
TEST 2:
Check that dipoles is non-zero with non-trivial steeringMatrix.
'''
beta = 45. * np.pi / 180.
Gt = np.array([[np.cos(beta), -np.sin(beta)],[np.sin(beta), np.cos(beta)], [0., 0.]])
GtInverse = np.linalg.pinv(Gt)
mtbArrayConfigParamsInMsgContainer.numMTB = 2
mtbArrayConfigParamsInMsgContainer.GtMatrix_B = [Gt[0, 0], Gt[0, 1],
Gt[1, 0], Gt[1, 1],
Gt[2, 0], Gt[2, 1]]
mtbArrayConfigParamsInMsg = messaging.MTBArrayConfigMsg().write(mtbArrayConfigParamsInMsgContainer)
module.mtbArrayConfigParamsInMsg.subscribeTo(mtbArrayConfigParamsInMsg)
module.steeringMatrix = [GtInverse[0, 0], GtInverse[0, 1], GtInverse[0, 2],
GtInverse[1, 0], GtInverse[1, 1], GtInverse[1, 2]]
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
expectedDipole = [0.] * messaging.MAX_EFF_CNT
expectedDipole[0:2] = GtInverse @ np.array(dipoleRequestBodyInMsgContainer.dipole_B)
testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole,
resultDipoleRequestMtbOutMsg.mtbDipoleCmds[0],
accuracy,
"dipoles",
testFailCount, testMessages)
'''
TEST 3:
Check that dipoles is zero with zero input dipole.
'''
dipoleRequestBodyInMsgContainer.dipole_B = [0., 0., 0.]
dipoleRequestBodyInMsg = messaging.DipoleRequestBodyMsg().write(dipoleRequestBodyInMsgContainer)
module.dipoleRequestBodyInMsg.subscribeTo(dipoleRequestBodyInMsg)
unitTestSim.InitializeSimulation()
unitTestSim.ExecuteSimulation()
unitTestSim.ExecuteSimulation()
expectedDipole = [0.] * messaging.MAX_EFF_CNT
testFailCount, testMessages = unitTestSupport.compareVector(expectedDipole,
resultDipoleRequestMtbOutMsg.mtbDipoleCmds[0],
accuracy,
"dipoles",
testFailCount, testMessages)
print("Accuracy used: " + str(accuracy))
if testFailCount == 0:
print("PASSED: dipoleMapping unit test")
else:
print("Failed: dipoleMapping unit test")
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_dipoleMapping_module()