# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Unit Test Script
# Module Name: attTrackingError
# Author: Hanspeter Schaub
# Creation Date: January 15, 2016
#
import inspect
import os
import numpy as np
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
from Basilisk.fswAlgorithms import attTrackingError # import the module that is to be tested
from Basilisk.utilities import macros
from Basilisk.utilities import RigidBodyKinematics as rbk
from Basilisk.architecture import messaging
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
def test_attTrackingError(show_plots):
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = subModuleTestFunction(show_plots)
assert testResults < 1, testMessage
def subModuleTestFunction(show_plots):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = attTrackingError.attTrackingError()
module.ModelTag = "attTrackingError"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
vector = [0.01, 0.05, -0.55]
module.sigma_R0R = vector
#
# Navigation Message
#
NavStateOutData = messaging.NavAttMsgPayload() # Create a structure for the input message
sigma_BN = [0.25, -0.45, 0.75]
NavStateOutData.sigma_BN = sigma_BN
omega_BN_B = [-0.015, -0.012, 0.005]
NavStateOutData.omega_BN_B = omega_BN_B
navStateInMsg = messaging.NavAttMsg().write(NavStateOutData)
#
# Reference Frame Message
#
RefStateOutData = messaging.AttRefMsgPayload() # Create a structure for the input message
sigma_RN = [0.35, -0.25, 0.15]
RefStateOutData.sigma_RN = sigma_RN
omega_RN_N = [0.018, -0.032, 0.015]
RefStateOutData.omega_RN_N = omega_RN_N
domega_RN_N = [0.048, -0.022, 0.025]
RefStateOutData.domega_RN_N = domega_RN_N
refInMsg = messaging.AttRefMsg().write(RefStateOutData)
# Setup logging on the test module output message so that we get all the writes to it
dataLog = module.attGuidOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect messages
module.attNavInMsg.subscribeTo(navStateInMsg)
module.attRefInMsg.subscribeTo(refInMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Set the simulation time.
# NOTE: the total simulation time may be longer than this value. The
# simulation is stopped at the next logging event on or after the
# simulation end time.
unitTestSim.ConfigureStopTime(macros.sec2nano(0.3)) # seconds to stop simulation
# Begin the simulation time run set above
unitTestSim.ExecuteSimulation()
#
# check sigma_BR
#
moduleOutput = dataLog.sigma_BR[0]
sigma_RN2 = rbk.addMRP(np.array(sigma_RN), -np.array(vector))
RN = rbk.MRP2C(sigma_RN2)
BN = rbk.MRP2C(np.array(sigma_BN))
BR = np.dot(BN, RN.T)
# set the filtered output truth states
trueVector = rbk.C2MRP(BR)
# compare the module results to the truth values
accuracy = 1e-12
if not unitTestSupport.isArrayEqual(moduleOutput, trueVector, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_BR unit test\n")
unitTestSupport.writeTeXSnippet("passFail_sigBR", "FAILED", path)
else:
unitTestSupport.writeTeXSnippet("passFail_sigBR", "PASSED", path)
#
# check omega_BR_B
#
moduleOutput = dataLog.omega_BR_B[0]
# set the filtered output truth states
trueVector = np.array(omega_BN_B) - np.dot(BN, np.array(omega_RN_N))
# compare the module results to the truth values
if not unitTestSupport.isArrayEqual(moduleOutput, trueVector, 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_BR_B unit test\n")
unitTestSupport.writeTeXSnippet("passFail_omega_BR_B", "FAILED", path)
else:
unitTestSupport.writeTeXSnippet("passFail_omega_BR_B", "PASSED", path)
#
# check omega_RN_B
#
moduleOutput = dataLog.omega_RN_B[0]
# set the filtered output truth states
trueVector = np.dot(BN, np.array(omega_RN_N))
# compare the module results to the truth values
if not unitTestSupport.isArrayEqual(moduleOutput,trueVector,3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test\n")
unitTestSupport.writeTeXSnippet("passFail_omega_RN_B", "FAILED", path)
else:
unitTestSupport.writeTeXSnippet("passFail_omega_RN_B", "PASSED", path)
#
# check domega_RN_B
#
moduleOutput = dataLog.domega_RN_B[0]
# set the filtered output truth states
trueVector = np.dot(BN, np.array(domega_RN_N))
# compare the module results to the truth values
if not unitTestSupport.isArrayEqual(moduleOutput,trueVector,3,accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_B unit test\n")
unitTestSupport.writeTeXSnippet("passFail_domega_RN_B", "FAILED", path)
else:
unitTestSupport.writeTeXSnippet("passFail_domega_RN_B", "PASSED", path)
# Note that we can continue to step the simulation however we feel like.
# Just because we stop and query data does not mean everything has to stop for good
unitTestSim.ConfigureStopTime(macros.sec2nano(0.6)) # run an additional 0.6 seconds
unitTestSim.ExecuteSimulation()
if testFailCount == 0:
print("PASSED: " + "attTrackingError test")
else:
print(testMessages)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
test_attTrackingError(False)