# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
import inspect
import math
import os
import numpy as np
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport # general support file with common unit test functions
import matplotlib as mpl
import matplotlib.pyplot as plt
from Basilisk.simulation import spacecraft
from Basilisk.utilities import macros
from Basilisk.simulation import gravityEffector
from Basilisk.simulation import vscmgStateEffector
from Basilisk.architecture import messaging
mpl.rc("figure", figsize=(5.75,4))
def defaultVSCMG():
VSCMG = messaging.VSCMGConfigMsgPayload()
VSCMG.rGB_B = [[0.],[0.],[0.]]
VSCMG.gsHat0_B = [[0.],[0.],[0.]]
VSCMG.gtHat0_B = [[0.],[0.],[0.]]
VSCMG.ggHat_B = [[0.],[0.],[0.]]
VSCMG.u_s_max = -1
VSCMG.u_s_min = -1
VSCMG.u_s_f = 0.
VSCMG.wheelLinearFrictionRatio = -1
VSCMG.u_g_current = 0.
VSCMG.u_g_max = -1
VSCMG.u_g_min = -1
VSCMG.u_g_f = 0.
VSCMG.gimbalLinearFrictionRatio = -1
VSCMG.Omega = 0.
VSCMG.gamma = 0.
VSCMG.gammaDot = 0.
VSCMG.Omega_max = 6000. * macros.RPM
VSCMG.gammaDot_max = -1
VSCMG.IW1 = 100./VSCMG.Omega_max # 0.159154943092
VSCMG.IW2 = 0.5*VSCMG.IW1 # 0.0795774715459
VSCMG.IW3 = 0.5*VSCMG.IW1 # 0.0795774715459
VSCMG.IG1 = 0.1
VSCMG.IG2 = 0.2
VSCMG.IG3 = 0.3
VSCMG.U_s = 4.8e-06 * 1e4
VSCMG.U_d = 1.54e-06 * 1e4
VSCMG.l = 0.01
VSCMG.L = 0.1
VSCMG.rGcG_G = [[0.0001],[-0.02],[0.1]]
VSCMG.massW = 6.
VSCMG.massG = 6.
VSCMG.VSCMGModel = 0
return VSCMG
def computeFFT(y,dt):
Fs = 1.0/dt # sampling rate
Ts = dt # sampling interval
n = len(y) # length of the signal
k = np.arange(n)
T = n/Fs
frq = k/T # two sides frequency range
frq = frq[list(range(n//2))] # one side frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[list(range(n//2))]
Y = abs(Y)
return [frq,Y]
def findPeaks(Y,maxfind):
peakIdxs = np.r_[True, Y[1:] > Y[:-1]] & np.r_[Y[:-1] > Y[1:], True]
peakIdxs[0] = False
peakIdxs[-1] = False
peakIdxs = np.array(np.where(peakIdxs==True))[0]
threshold = np.sort(Y[peakIdxs])[-maxfind]
peakIdxs = peakIdxs[np.where(Y[peakIdxs] >= threshold)[0]]
return peakIdxs
[docs]
@pytest.mark.parametrize("useFlag, testCase", [
(False,'BalancedWheels'),
(False,'JitterSimple'),
(False,'JitterFullyCoupled'),
(False,'JitterFullyCoupledGravity'),
])
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
def test_VSCMGIntegratedTest(show_plots,useFlag,testCase):
"""Module Unit Test"""
[testResults, testMessage] = VSCMGIntegratedTest(show_plots,useFlag,testCase)
assert testResults < 1, testMessage
def VSCMGIntegratedTest(show_plots,useFlag,testCase):
# The __tracebackhide__ setting influences pytest showing of tracebacks:
# the mrp_steering_tracking() function will not be shown unless the
# --fulltrace command line option is specified.
__tracebackhide__ = True
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty list to store test log messages
scObject = spacecraft.Spacecraft()
scObject.ModelTag = "spacecraftBody"
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
if testCase == 'JitterFullyCoupled' or testCase == 'JitterFullyCoupledGravity':
dt = 0.00001
duration = 0.01
else:
dt = 0.001
duration = 1.
testProcessRate = macros.sec2nano(dt) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# add RW devices
VSCMGs = []
ang = 54.75 * np.pi/180
VSCMGs.append(defaultVSCMG())
VSCMGs[0].gsHat0_B = [[1.0], [0.0], [0.0]]
VSCMGs[0].gtHat0_B = [[0.0], [1.0], [0.0]]
VSCMGs[0].ggHat_B = [[0.0], [0.0], [1.0]]
VSCMGs[0].Omega = 2000 * macros.RPM
VSCMGs[0].gamma = 0.
VSCMGs[0].gammaDot = 0.06
VSCMGs[0].rGB_B = [[0.1], [0.002], [-0.02]]
VSCMGs.append(defaultVSCMG())
VSCMGs[1].gsHat0_B = [[0.0], [1.0], [0.0]]
VSCMGs[1].ggHat_B = [[math.cos(ang)], [0.0], [math.sin(ang)]]
VSCMGs[1].gtHat0_B = np.cross(np.array([math.cos(ang), 0.0, math.sin(ang)]),np.array([0.0, 1.0, 0.0]))
VSCMGs[1].Omega = 350 * macros.RPM
VSCMGs[1].gamma = 0.
VSCMGs[1].gammaDot = 0.011
VSCMGs[1].rGB_B = [[0.0], [-0.05], [0.0]]
VSCMGs.append(defaultVSCMG())
VSCMGs[2].gsHat0_B = [[0.0], [-1.0], [0.0]]
VSCMGs[2].ggHat_B = [[-math.cos(ang)], [0.0], [math.sin(ang)]]
VSCMGs[2].gtHat0_B = np.cross(np.array([-math.cos(ang), 0.0, math.sin(ang)]),np.array([0.0, -1.0, 0.0]))
VSCMGs[2].Omega = -900 * macros.RPM
VSCMGs[2].gamma = 0.
VSCMGs[2].gammaDot = -0.003
VSCMGs[2].rGB_B = [[-0.1], [0.05], [0.05]]
if testCase == 'BalancedWheels':
VSCMGModel = 0
elif testCase == 'JitterSimple':
VSCMGModel = 1
elif testCase == 'JitterFullyCoupled' or testCase == 'JitterFullyCoupledGravity':
VSCMGModel = 2
for VSCMG in VSCMGs:
VSCMG.VSCMGModel = VSCMGModel
if testCase == 'JitterFullyCoupled':
VSCMGs = [VSCMGs[0],VSCMGs[2]]
N = len(VSCMGs)
# create VSCMG object container and tie to spacecraft object
rwStateEffector = vscmgStateEffector.VSCMGStateEffector()
rwStateEffector.ModelTag = "VSCMGs"
for item in VSCMGs:
rwStateEffector.AddVSCMG(item)
scObject.addStateEffector(rwStateEffector)
# set RW torque command
cmdArray = messaging.VSCMGArrayTorqueMsgPayload()
if testCase == 'BalancedWheels' or testCase == 'JitterFullyCoupled':
cmdArray.wheelTorque = [0.0, 0.0, 0.0] # [Nm]
cmdArray.gimbalTorque = [0.0, 0.0, 0.0] # [Nm]
else:
cmdArray.wheelTorque = [0.001, 0.005, -0.009] # [Nm]
cmdArray.gimbalTorque = [0.008, -0.0015, -0.006] # [Nm]
cmdMsg = messaging.VSCMGArrayTorqueMsg().write(cmdArray)
rwStateEffector.cmdsInMsg.subscribeTo(cmdMsg)
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, rwStateEffector)
unitTestSim.AddModelToTask(unitTaskName, scObject)
if testCase != 'JitterFullyCoupled':
unitTestSim.earthGravBody = gravityEffector.GravBodyData()
unitTestSim.earthGravBody.planetName = "earth_planet_data"
unitTestSim.earthGravBody.mu = 0.3986004415E+15 # meters!
unitTestSim.earthGravBody.isCentralBody = True
scObject.gravField.gravBodies = spacecraft.GravBodyVector([unitTestSim.earthGravBody])
scObject.hub.mHub = 750.0
scObject.hub.r_BcB_B = [[-0.0002], [0.0001], [0.1]]
scObject.hub.IHubPntBc_B = [[900.0, 0.0, 0.0], [0.0, 800.0, 0.0], [0.0, 0.0, 600.0]]
if testCase == 'JitterFullyCoupled':
scObject.hub.r_CN_NInit = [[0.1], [-0.2], [0.3]]
scObject.hub.v_CN_NInit = [[-0.4], [0.5], [-0.8]]
else:
scObject.hub.r_CN_NInit = [[-4020338.690396649], [7490566.741852513], [5248299.211589362]]
scObject.hub.v_CN_NInit = [[-5199.77710904224], [-3436.681645356935], [1041.576797498721]]
scObject.hub.sigma_BNInit = [[0.0], [0.0], [0.0]]
scObject.hub.omega_BN_BInit = [[0.08], [0.01], [0.0]]
# log data
dataLog = scObject.scStateOutMsg.recorder()
speedLog = rwStateEffector.speedOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
unitTestSim.AddModelToTask(unitTaskName, speedLog)
scObjectLog = scObject.logger(["totOrbAngMomPntN_N", "totRotAngMomPntC_N", "totOrbEnergy", "totRotEnergy"])
unitTestSim.AddModelToTask(unitTaskName, scObjectLog)
unitTestSim.ConfigureStopTime(macros.sec2nano(duration))
unitTestSim.InitializeSimulation()
posRef = scObject.dynManager.getStateObject(scObject.hub.nameOfHubPosition)
sigmaRef = scObject.dynManager.getStateObject(scObject.hub.nameOfHubSigma)
unitTestSim.ExecuteSimulation()
orbAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbAngMomPntN_N)
rotAngMom_N = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotAngMomPntC_N)
rotEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totRotEnergy)
orbEnergy = unitTestSupport.addTimeColumn(scObjectLog.times(), scObjectLog.totOrbEnergy)
wheelSpeeds = speedLog.wheelSpeeds
gimbalAngles = speedLog.gimbalAngles
gimbalRates = speedLog.gimbalRates
sigmaData = dataLog.sigma_BN
omegaData = dataLog.omega_BN_B
dataPos = posRef.getState()
dataSigma = sigmaRef.getState()
dataPos = [[dataPos[0][0], dataPos[1][0], dataPos[2][0]]]
dataSigma = [[dataSigma[0][0], dataSigma[1][0], dataSigma[2][0]]]
if testCase == 'BalancedWheels':
truePos = [
[-4025537.664298894, 7487128.570444949, 5249339.643828076]
]
trueSigma = [
[0.0185829763256, 0.00212563436704, -0.00118728497031]
]
elif testCase == 'JitterSimple':
truePos = [
[-4025537.659558947, 7487128.570662447, 5249339.653774626]
]
trueSigma = [
[0.018774477186285467, 0.0018376842577357564, -0.00023633044221463834]
]
elif testCase == 'JitterFullyCoupled':
truePos = [
[0.0970572658434, -0.195562924079, 0.191874379545]
]
trueSigma = [
[0.000201909373901, 2.9217809421e-05, 4.00231302121e-06]
]
elif testCase == 'JitterFullyCoupledGravity':
truePos = [
[-4020390.68802, 7490532.37502, 5248309.52745]
]
trueSigma = [
[0.000201662012765, 2.92123940252e-05, 4.15606551702e-06]
]
initialOrbAngMom_N = [
[orbAngMom_N[0,1], orbAngMom_N[0,2], orbAngMom_N[0,3]]
]
finalOrbAngMom = [
[orbAngMom_N[-1,1], orbAngMom_N[-1,2], orbAngMom_N[-1,3]]
]
initialRotAngMom_N = [
[rotAngMom_N[0,1], rotAngMom_N[0,2], rotAngMom_N[0,3]]
]
finalRotAngMom = [
[rotAngMom_N[-1,1], rotAngMom_N[-1,2], rotAngMom_N[-1,3]]
]
initialOrbEnergy = [
[orbEnergy[0,1]]
]
finalOrbEnergy = [
[orbEnergy[-1,1]]
]
initialRotEnergy = [
[rotEnergy[0,1]]
]
finalRotEnergy = [
[rotEnergy[-1,1]]
]
plt.close("all")
plt.figure()
plt.plot(orbAngMom_N[:,0]*1e-9, orbAngMom_N[:,1] - orbAngMom_N[0,1], orbAngMom_N[:,0]*1e-9, orbAngMom_N[:,2] - orbAngMom_N[0,2], orbAngMom_N[:,0]*1e-9, orbAngMom_N[:,3] - orbAngMom_N[0,3])
plt.title("Change in Orbital Angular Momentum")
unitTestSupport.writeFigureLaTeX("ChangeInOrbitalAngularMomentum" + testCase,
"Change in Orbital Angular Momentum " + testCase, plt, "width=0.80\\textwidth",
path)
plt.figure()
plt.plot(rotAngMom_N[:,0]*1e-9, rotAngMom_N[:,1] - rotAngMom_N[0,1], rotAngMom_N[:,0]*1e-9, rotAngMom_N[:,2] - rotAngMom_N[0,2], rotAngMom_N[:,0]*1e-9, rotAngMom_N[:,3] - rotAngMom_N[0,3])
plt.title("Change in Rotational Angular Momentum")
unitTestSupport.writeFigureLaTeX("ChangeInOrbitalEnergy" + testCase, "Change in Orbital Energy " + testCase, plt,
"width=0.80\\textwidth", path)
plt.figure()
plt.plot(orbEnergy[:,0]*1e-9, orbEnergy[:,1] - orbEnergy[0,1])
plt.title("Change in Orbital Energy")
unitTestSupport.writeFigureLaTeX("ChangeInRotationalAngularMomentum" + testCase,
"Change in Rotational Angular Momentum " + testCase, plt, "width=0.80\\textwidth",
path)
plt.figure()
plt.plot(rotEnergy[:,0]*1e-9, rotEnergy[:,1] - rotEnergy[0,1])
plt.title("Change in Rotational Energy")
unitTestSupport.writeFigureLaTeX("ChangeInRotationalEnergy" + testCase, "Change in Rotational Energy " + testCase,
plt, "width=0.80\\textwidth", path)
plt.figure()
for i in range(0,N):
plt.subplot(4,1,i+1)
plt.plot(speedLog.times()*1.0E-9, wheelSpeeds[:,i] / (2.0 * math.pi) * 60, label='RWA' + str(i))
plt.xlabel('Time (s)')
plt.ylabel(r'RW' + str(i) + r' $\Omega$ (RPM)')
plt.figure()
for i in range(0,N):
plt.subplot(4,1,i+1)
plt.plot(speedLog.times()*1.0E-9, gimbalAngles[:,i], label=str(i))
plt.xlabel('Time (s)')
plt.ylabel(r'$\gamma_'+str(i)+'$ (rad)')
plt.figure()
for i in range(0,N):
plt.subplot(4,1,i+1)
plt.plot(speedLog.times()*1.0E-9, gimbalRates[:,i] * 180/np.pi, label=str(i))
plt.xlabel('Time (s)')
plt.ylabel(r'$\dot{\gamma}_'+str(i)+'$ (d/s)')
plt.figure()
for i in range(0,N):
plt.subplot(4,1,i+1)
plt.plot(dataLog.times()*1.0E-9, sigmaData[:,i], label='MRP' + str(i))
plt.xlabel('Time (s)')
plt.ylabel(r'MRP b' + str(i))
plt.figure()
for i in range(0,N):
plt.subplot(4,1,i+1)
plt.plot(dataLog.times()*1.0E-9, omegaData[:,i] * 180/math.pi, label='omega' + str(i))
plt.xlabel('Time (s)')
plt.ylabel(r'b' + str(i) + r' $\omega$ (d/s)')
if testCase != 'BalancedWheels' and testCase != 'JitterFullyCoupledGravity':
istart = int(.01/dt)
sigmaDataCut = sigmaData#sigmaData[istart:,:]
thetaData = np.empty([len(sigmaDataCut[:,0]),2])
thetaData[:,0] = sigmaDataCut[:,0]
for i in range(0,len(thetaData[:,0])):
thetaData[i,1] = 4*np.arctan(np.linalg.norm(sigmaDataCut[i,1:]))
if testCase == 'JitterSimple':
fitOrd = 11
else:
fitOrd = 9
thetaFit = np.empty([len(sigmaDataCut[:,0]),2])
thetaFit[:,0] = thetaData[:,0]
p = np.polyfit(thetaData[:,0]*1e-9,thetaData[:,1],fitOrd)
thetaFit[:,1] = np.polyval(p,thetaFit[:,0]*1e-9)
plt.figure()
plt.plot(thetaData[:,0]*1e-9, thetaData[:,1]-thetaFit[:,1])
plt.title("Principle Angle Fit")
plt.xlabel('Time (s)')
plt.ylabel(r'$\theta$ (deg)')
[frq,Y] = computeFFT(thetaData[:,1]-thetaFit[:,1],dt)
peakIdxs = findPeaks(Y,N)
wheelSpeeds_data = np.array(frq[peakIdxs])*60.
wheelSpeeds_true = np.sort(abs(np.array([VSCMG.Omega/macros.RPM for VSCMG in VSCMGs])))
fig, ax = plt.subplots(2,1)
ax[0].plot(thetaFit[:,0]*1e-9,thetaData[:,1]-thetaFit[:,1])
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Amplitude')
ax[1].plot(frq,abs(Y),'r')
ax[1].set_xlabel('Freq (Hz)')
ax[1].set_ylabel('Magnitude')
ax[1].plot(frq[peakIdxs],Y[peakIdxs],'bo')
plt.xlim((0,VSCMGs[0].Omega_max/macros.RPM/60.))
plt.figure()
plt.plot(thetaData[:,0]*1e-9, thetaData[:,1])
plt.title("Principle Angle")
plt.xlabel('Time (s)')
plt.ylabel(r'$\theta$ (deg)')
if show_plots == True:
plt.show()
plt.close('all')
accuracy = 1e-7
for i in range(0,len(truePos)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(dataPos[i],truePos[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed pos unit test")
for i in range(0,len(trueSigma)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(dataSigma[i],trueSigma[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed attitude unit test")
if testCase == 'JitterSimple':
for i in range(N):
# check a vector values
if not abs(wheelSpeeds_data[i] - wheelSpeeds_true[i]) / wheelSpeeds_true[i] < .09:
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed jitter unit test")
accuracy = 1e-10
if testCase == 'BalancedWheels' or testCase == 'JitterFullyCoupled':
for i in range(0,len(initialOrbAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbAngMom[i],initialOrbAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed orbital angular momentum unit test")
for i in range(0,len(initialRotAngMom_N)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotAngMom[i],initialRotAngMom_N[i],3,accuracy):
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed rotational angular momentum unit test")
for i in range(0, len(initialOrbEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalOrbEnergy[i], initialOrbEnergy[i], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed orbital energy unit test")
for i in range(0, len(initialRotEnergy)):
# check a vector values
if not unitTestSupport.isArrayEqualRelative(finalRotEnergy[i], initialRotEnergy[i], 1, accuracy):
testFailCount += 1
testMessages.append("FAILED: VSCMG Integrated Test failed rot energy unit test")
# print out success message if no errors were found
if testFailCount == 0:
print("PASSED ")
colorText = 'ForestGreen'
passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
# Write some snippets for AutoTex
snippetName = testCase + 'PassFail'
unitTestSupport.writeTeXSnippet(snippetName, passedText, path)
elif testFailCount > 0:
colorText = 'Red'
passedText = r'\textcolor{' + colorText + '}{' + "FAILED" + '}'
# Write some snippets for AutoTex
snippetName = testCase + 'PassFail'
unitTestSupport.writeTeXSnippet(snippetName, passedText, path)
if testFailCount == 0:
print("PASSED: " + " VSCMG Integrated Sim Test")
else:
print(testMessages)
assert testFailCount < 1, testMessages
# return fail count and join into a single string all messages in the list
# testMessage
return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
VSCMGIntegratedTest(False,False,'JitterFullyCoupled')