#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
# Unit Test Script
# Module Name: PRV_Steering
# Author: Hanspeter Schaub
# Creation Date: December 18, 2015
#
import matplotlib.pyplot as plt
# import packages as needed e.g. 'numpy', 'ctypes, 'math' etc.
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import prvSteering
from Basilisk.fswAlgorithms import rateServoFullNonlinear
# Import all of the modules that we are going to call in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("simCase", [0, 1])
def test_prvSteering(show_plots, simCase): # update "subModule" in this function name to reflect the module name
"""Module Unit Test"""
# each test method requires a single assert method to be called
[testResults, testMessage] = subModuleTestFunction(show_plots, simCase)
assert testResults < 1, testMessage
def subModuleTestFunction(show_plots, simCase):
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
unitTaskName = "unitTask" # arbitrary name (don't change)
unitProcessName = "TestProcess" # arbitrary name (don't change)
# Create a sim module as an empty container
unitTestSim = SimulationBaseClass.SimBaseClass()
# Create test thread
testProcessRate = macros.sec2nano(0.5) # update process rate update time
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# Construct algorithm and associated C++ container
module = prvSteering.prvSteering()
module.ModelTag = "prvSteering"
servo = rateServoFullNonlinear.rateServoFullNonlinear()
servo.ModelTag = "rate_servo"
# Add test module to runtime call list
unitTestSim.AddModelToTask(unitTaskName, module)
unitTestSim.AddModelToTask(unitTaskName, servo)
# configure BSK modules
module.K1 = 0.15
module.K3 = 1.0
module.omega_max = 1.5*macros.D2R
servo.Ki = 0.01
servo.P = 150.0
servo.integralLimit = 2./servo.Ki * 0.1
servo.knownTorquePntB_B = [0., 0., 0.]
# Create input message and size it because the regular creator of that message
# is not part of the test.
# attGuidOut Message:
guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message
sigma_BR = []
if simCase == 0:
sigma_BR = np.array([0.3, -0.5, 0.7])
if simCase == 1:
sigma_BR = np.array([0, 0, 0])
guidCmdData.sigma_BR = sigma_BR
omega_BR_B = np.array([0.010, -0.020, 0.015])
guidCmdData.omega_BR_B = omega_BR_B
omega_RN_B = np.array([-0.02, -0.01, 0.005])
guidCmdData.omega_RN_B = omega_RN_B
domega_RN_B = np.array([0.0002, 0.0003, 0.0001])
guidCmdData.domega_RN_B = domega_RN_B
guidInMsg = messaging.AttGuidMsg().write(guidCmdData)
# vehicleConfigData Message:
vehicleConfigOut = messaging.VehicleConfigMsgPayload()
I = [1000., 0., 0.,
0., 800., 0.,
0., 0., 800.]
vehicleConfigOut.ISCPntB_B = I
vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut)
# wheelSpeeds Message
rwSpeedMessage = messaging.RWSpeedMsgPayload()
Omega = [10.0, 25.0, 50.0, 100.0]
rwSpeedMessage.wheelSpeeds = Omega
rwSpeedInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage)
# wheelConfigData message
def writeMsgInWheelConfiguration():
rwConfigParams = messaging.RWArrayConfigMsgPayload()
rwConfigParams.GsMatrix_B = [
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0
]
rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1]
rwConfigParams.numRW = 4
rwParamInMsg = messaging.RWArrayConfigMsg().write(rwConfigParams)
return rwParamInMsg
rwParamInMsg = writeMsgInWheelConfiguration()
# wheelAvailability message
def writeMsgInWheelAvailability():
rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload()
avail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE]
rwAvailabilityMessage.wheelAvailability = avail
rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage)
return rwAvailInMsg
rwAvailInMsg = writeMsgInWheelAvailability()
# Setup logging on the test module output message so that we get all the writes to it
dataLog = servo.cmdTorqueOutMsg.recorder()
unitTestSim.AddModelToTask(unitTaskName, dataLog)
# connect input and output messages
module.guidInMsg.subscribeTo(guidInMsg)
servo.vehConfigInMsg.subscribeTo(vcInMsg)
servo.guidInMsg.subscribeTo(guidInMsg)
servo.rwParamsInMsg.subscribeTo(rwParamInMsg)
servo.rwAvailInMsg.subscribeTo(rwAvailInMsg)
servo.rwSpeedsInMsg.subscribeTo(rwSpeedInMsg)
servo.rateSteeringInMsg.subscribeTo(module.rateCmdOutMsg)
# Need to call the self-init and cross-init methods
unitTestSim.InitializeSimulation()
# Step the simulation to 3*process rate so 4 total steps including zero
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
servo.Reset(1) # this module reset function needs a time input (in NanoSeconds)
unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation
unitTestSim.ExecuteSimulation()
# set the filtered output truth states
trueVector = []
if simCase == 0:
trueVector = [
[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084]
,[-2.9352922876097969, +6.2831737715827778, -4.0554726129822907]
,[-2.9353853745179044, +6.2833455830962901, -4.0556481491012084]
]
if simCase == 1:
trueVector = [
[-1.39, 3.79, -1.39]
,[-1.39, 3.79, -1.39]
,[-1.39005, 3.7901, -1.390075]
,[-1.39, 3.79, -1.39]
,[-1.39005, 3.7901, -1.390075]
]
# compare the module results to the truth values
accuracy = 1e-12
for i in range(0,len(trueVector)):
# check a vector values
if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], trueVector[i], 3, accuracy):
testFailCount += 1
testMessages.append("FAILED: " + module.ModelTag + " Module failed torqueRequestBody unit test at t="
+ str(dataLog.times()[i]*macros.NANO2SEC) + "sec\n")
# If the argument provided at commandline "--show_plots" evaluates as true,
# plot all figures
if show_plots:
plt.show()
if testFailCount == 0:
print("PASSED: " + module.ModelTag)
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a stand-along python scripts
# authmatically executes the runUnitTest() method
#
if __name__ == "__main__":
test_prvSteering(True, 1)