Source code for test_MRP_steeringInt

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import matplotlib.pyplot as plt
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import mrpSteering  # import the module that is to be tested
from Basilisk.fswAlgorithms import rateServoFullNonlinear
from Basilisk.utilities import RigidBodyKinematics
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions


# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_

[docs] @pytest.mark.parametrize("K1", [0.15, 0]) @pytest.mark.parametrize("K3", [1, 0]) @pytest.mark.parametrize("omegaMax", [1.5 * macros.D2R, 0.001]) def test_mrp_steering_tracking(show_plots,K1, K3, omegaMax): r""" **Validation Test Description** This unit test is an integrated test of this module with :ref:`rateServoFullNonlinear` as well, comparing the desired torques computed :math:`{\bf L}_r` with truth values computed in the test. **Test Parameters** This test checks a set of gains ``K1``, ``K3`` and ``omegaMax`` on a rigid body with no external torques, and with a fixed input reference attitude message. The commanded rate solution is evaluated against python computed values at 0s, 0.5s, 1.0s, 1.5s and 2s to within a tolerance of :math:`10^{-12}`. :param show_plots: flag indicating if plots should be shown. :param K1: The control gain :math:`K_1` :param K3: The control gain :math:`K_3` :param omegaMax: The control gain :math:`\omega_{\text{max}}` :return: void """ [testResults, testMessage] = mrp_steering_tracking(show_plots,K1, K3, omegaMax) assert testResults < 1, testMessage
def mrp_steering_tracking(show_plots,K1, K3, omegaMax): # The __tracebackhide__ setting influences pytest showing of tracebacks: # the mrp_steering_tracking() function will not be shown unless the # --fulltrace command line option is specified. __tracebackhide__ = True testFailCount = 0 # zero unit test result counter testMessages = [] # create empty list to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container module = mrpSteering.mrpSteering() module.ModelTag = "mrpSteering" servo = rateServoFullNonlinear.rateServoFullNonlinear() servo.ModelTag = "rate_servo" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, module) unitTestSim.AddModelToTask(unitTaskName, servo) module.K1 = K1 module.K3 = K3 module.omega_max = omegaMax servo.Ki = 0.01 servo.P = 150.0 servo.integralLimit = 2. / servo.Ki * 0.1 servo.knownTorquePntB_B = [0., 0., 0.] # Create input message and size it because the regular creator of that message # is not part of the test. # attGuidOut Message: guidCmdData = messaging.AttGuidMsgPayload() # Create a structure for the input message guidCmdData.sigma_BR = [0.3, -0.5, 0.7] guidCmdData.omega_BR_B = [0.010, -0.020, 0.015] guidCmdData.omega_RN_B = [-0.02, -0.01, 0.005] guidCmdData.domega_RN_B = [0.0002, 0.0003, 0.0001] guidInMsg = messaging.AttGuidMsg().write(guidCmdData) # vehicleConfigData Message: vehicleConfigOut = messaging.VehicleConfigMsgPayload() I = [1000., 0., 0., 0., 800., 0., 0., 0., 800.] vehicleConfigOut.ISCPntB_B = I vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut) # wheelSpeeds Message rwSpeedMessage = messaging.RWSpeedMsgPayload() Omega = [10.0, 25.0, 50.0, 100.0] rwSpeedMessage.wheelSpeeds = Omega rwInMsg = messaging.RWSpeedMsg().write(rwSpeedMessage) # wheelConfigData message def writeMsgInWheelConfiguration(): rwConfigParams = messaging.RWArrayConfigMsgPayload() rwConfigParams.GsMatrix_B = [ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.5773502691896258, 0.5773502691896258, 0.5773502691896258 ] rwConfigParams.JsList = [0.1, 0.1, 0.1, 0.1] rwConfigParams.numRW = 4 msg = messaging.RWArrayConfigMsg().write(rwConfigParams) jsList = rwConfigParams.JsList GsMatrix_B = rwConfigParams.GsMatrix_B return jsList, GsMatrix_B, msg jsList, GsMatrix_B, rwParamInMsg = writeMsgInWheelConfiguration() # wheelAvailability message rwAvailList = [] rwAvailabilityMessage = messaging.RWAvailabilityMsgPayload() rwAvail = [messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE, messaging.AVAILABLE] rwAvailabilityMessage.wheelAvailability = rwAvail rwAvailInMsg = messaging.RWAvailabilityMsg().write(rwAvailabilityMessage) rwAvailList.append(rwAvail) # Setup logging on the test module output message so that we get all the writes to it dataLog = servo.cmdTorqueOutMsg.recorder() unitTestSim.AddModelToTask(unitTaskName, dataLog) # connect messages module.guidInMsg.subscribeTo(guidInMsg) servo.guidInMsg.subscribeTo(guidInMsg) servo.vehConfigInMsg.subscribeTo(vcInMsg) servo.rwParamsInMsg.subscribeTo(rwParamInMsg) servo.vehConfigInMsg.subscribeTo(vcInMsg) servo.rwSpeedsInMsg.subscribeTo(rwInMsg) servo.rateSteeringInMsg.subscribeTo(module.rateCmdOutMsg) servo.rwAvailInMsg.subscribeTo(rwAvailInMsg) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Step the simulation to 3*process rate so 4 total steps including zero unitTestSim.ConfigureStopTime(macros.sec2nano(1.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() servo.Reset(1) # this module reset function needs a time input (in NanoSeconds) unitTestSim.ConfigureStopTime(macros.sec2nano(2.0)) # seconds to stop simulation unitTestSim.ExecuteSimulation() # Compute true values trueVals = findTrueTorques(module, servo, guidCmdData, rwSpeedMessage, vehicleConfigOut, rwAvailList) # set the filtered output truth states # compare the module results to the truth values accuracy = 1e-12 for i in range(0, len(trueVals)): # check a vector values if not unitTestSupport.isArrayEqual(dataLog.torqueRequestBody[i], trueVals[i], 3, accuracy): testFailCount += 1 testMessages.append("FAILED: " + module.ModelTag + " Module failed torqueRequestBody unit test at t=" + str(dataLog.times[i] * macros.NANO2SEC) + "sec \n") # If the argument provided at commandline "--show_plots" evaluates as true, # plot all figures if show_plots: plt.show() # print out success message if no error were found if testFailCount == 0: print("PASSED: " + module.ModelTag) # return fail count and join into a single string all messages in the list # testMessage return [testFailCount, ''.join(testMessages)] def findTrueValues(guidCmdData, module): omegaMax = module.omega_max sigma = np.asarray(guidCmdData.sigma_BR) K1 = np.asarray(module.K1) K3 = np.asarray(module.K3) Bmat = RigidBodyKinematics.BmatMRP(sigma) omegaAst = []#np.asarray([0, 0, 0]) omegaAst_P = [] for i in range(len(sigma)): steerRate = -1*(2*omegaMax/np.pi)*np.arctan((K1*sigma[i]+K3*sigma[i]*sigma[i]*sigma[i])*np.pi/(2*omegaMax)) omegaAst.append(steerRate) #print omegaAst if 1:#module.ignoreOuterLoopFeedforward: #should be "if not" sigmaP = 0.25*Bmat.dot(omegaAst) for i in range(len(sigma)): omegaAstRate = (K1+3*K3*sigma[i]**2)/(1+((K1*sigma[i]+K3*sigma[i]**3)**2)*(np.pi/(2*omegaMax))**2)*sigmaP[i] omegaAst_P.append(-omegaAstRate) else: omegaAst_P = np.asarray([0, 0, 0]) return omegaAst, omegaAst_P def findTrueTorques(module,servo, guidCmdData,rwSpeedMessage,vehicleConfigOut, rwAvailMsg): Lr = [] #Read in variables numRW = servo.rwConfigParams.numRW L = np.asarray(servo.knownTorquePntB_B) steps = [0, 0, .5, 0, .5] omega_BR_B = np.asarray(guidCmdData.omega_BR_B) omega_RN_B = np.asarray(guidCmdData.omega_RN_B) omega_BN_B = omega_BR_B + omega_RN_B #find body rate domega_RN_B = np.asarray(guidCmdData.domega_RN_B) omega_BastR_B, omegap_BastR_B = findTrueValues(guidCmdData, module) omega_BastN_B = omega_BastR_B+omega_RN_B omega_BBast_B = omega_BN_B - omega_BastN_B Isc = np.asarray(vehicleConfigOut.ISCPntB_B) Isc = np.reshape(Isc, (3, 3)) Ki = servo.Ki P = servo.P jsVec = servo.rwConfigParams.JsList[0:numRW] #GsMatrix_B_array = np.asarray(GsMatrix) GsMatrix = (servo.rwConfigParams.GsMatrix_B) GsMatrix_B_array = np.reshape(GsMatrix[0:numRW * 3], (numRW, 3)) #Compute toruqes for i in range(len(steps)): dt = steps[i] if dt == 0: zVec = np.asarray([0, 0, 0]) #evaluate integral term if Ki > 0 and abs(servo.integralLimit) > 0: #if integral feedback is on zVec = dt * omega_BBast_B + zVec # z = integral(del_omega) # Make sure each component is less than the integral limit for i in range(3): if zVec[i] > servo.integralLimit: zVec[i] = zVec[i]/abs(zVec[i])*servo.integralLimit else: #integral gain turned off/negative setting zVec = np.asarray([0, 0, 0]) #compute torque Lr Lr0 = Ki * zVec # +K*sigmaBR Lr1 = Lr0 + P * omega_BBast_B # +P*deltaOmega GsHs = np.array([0,0,0]) if numRW > 0: for i in range(numRW): if rwAvailMsg[0][i] == 0: # Make RW availability check GsHs = GsHs + np.dot(GsMatrix_B_array[i, :], jsVec[i]*(np.dot(omega_BN_B, GsMatrix_B_array[i, :]) + rwSpeedMessage.wheelSpeeds[i])) # J_s*(dot(omegaBN_B,Gs_vec)+Omega_wheel) Lr2 = Lr1 - np.cross(omega_BastN_B, (Isc.dot(omega_BN_B)+GsHs)) # - omega_BastN x ([I]omega + [Gs]h_s) Lr3 = Lr2 - Isc.dot(omegap_BastR_B + domega_RN_B - np.cross(omega_BN_B, omega_RN_B)) # - [I](d(omega_B^ast/R)/dt + d(omega_r)/dt - omega x omega_r) Lr4 = Lr3 + L Lr4 = -Lr4 Lr.append(np.ndarray.tolist(Lr4)) return Lr if __name__ == "__main__": test_mrp_steering_tracking(False, 0.15, 1.0, 0.025)