#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import pytest
from Basilisk.architecture import messaging
from Basilisk.simulation import coarseSunSensor
# import general simulation support files
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport
[docs]
@pytest.mark.parametrize("accuracy", [1e-12])
def test_CSSConfig(show_plots, accuracy):
'''This function is called by the py.test environment.'''
# each test method requires a single assert method to be called
[testResults, testMessage] = run(show_plots, accuracy)
assert testResults < 1, testMessage
[docs]
def run(show_plots, accuracy):
"""
At the end of the python script you can specify the following example parameters.
Args:
show_plots (bool): Determines if the script should display plots
"""
testFailCount = 0 # zero unit test result counter
testMessages = [] # create empty array to store test log messages
# Create simulation variable names
simTaskName = "simTask"
simProcessName = "simProcess"
# Create a sim module as an empty container
scSim = SimulationBaseClass.SimBaseClass()
#
# create the simulation process
#
dynProcess = scSim.CreateNewProcess(simProcessName)
# create the dynamics task and specify the integration update time
simulationTimeStep = macros.sec2nano(1.)
dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep))
# create the CSS modules
CSS1 = coarseSunSensor.CoarseSunSensor()
CSS1.ModelTag = "CSS1"
CSS1.fov = 80. * macros.D2R
CSS1.maxOutput = 10.
CSS1.nHat_B = [1.0, 0.0, 0.0]
CSS2 = coarseSunSensor.CoarseSunSensor()
CSS2.ModelTag = "CSS2"
CSS2.r_B = [1., 2., 3.]
CSS2.fov = 70. * macros.D2R
CSS2.minOutput = 1.0
CSS2.maxOutput = 20.
CSS2.nHat_B = [0.0, -1.0, 0.0]
CSS2.CSSGroupID = 1
scSim.AddModelToTask(simTaskName, CSS1)
scSim.AddModelToTask(simTaskName, CSS2)
dataLog1 = CSS1.cssConfigLogOutMsg.recorder()
dataLog2 = CSS2.cssConfigLogOutMsg.recorder()
scSim.AddModelToTask(simTaskName, dataLog1)
scSim.AddModelToTask(simTaskName, dataLog2)
# create sun position input message
sunPositionMsg = messaging.SpicePlanetStateMsgPayload()
sunPositionMsg.PositionVector = [0.0, 0.0, 0.0]
sunMsg = messaging.SpicePlanetStateMsg().write(sunPositionMsg)
CSS1.sunInMsg.subscribeTo(sunMsg)
CSS2.sunInMsg.subscribeTo(sunMsg)
# create spacecraft state message
scStateMsg = messaging.SCStatesMsgPayload()
scStateMsg.r_BN_N = [-10.0, 0.0, 0.0]
scStateMsg.sigma_BN = [0.0, 0.0, 0.0]
scMsg = messaging.SCStatesMsg().write(scStateMsg)
CSS1.stateInMsg.subscribeTo(scMsg)
CSS2.stateInMsg.subscribeTo(scMsg)
scSim.InitializeSimulation()
scSim.TotalSim.SingleStepProcesses()
# pull logged data
dataCSS1pos = dataLog1.r_B
dataCSS1nHat = dataLog1.nHat_B
dataCSS1fov = dataLog1.fov
dataCSS1signal = dataLog1.signal
dataCSS1maxSignal = dataLog1.maxSignal
dataCSS1minSignal = dataLog1.minSignal
dataCSS1CSSGroupID = dataLog1.CSSGroupID
dataCSS2pos = dataLog2.r_B
dataCSS2nHat = dataLog2.nHat_B
dataCSS2fov = dataLog2.fov
dataCSS2signal = dataLog2.signal
dataCSS2maxSignal = dataLog2.maxSignal
dataCSS2minSignal = dataLog2.minSignal
dataCSS2CSSGroupID = dataLog2.CSSGroupID
# check CSS 1 output
testFailCount, testMessages = unitTestSupport.compareArray([[0., 0., 0.]], dataCSS1pos,
accuracy, "CSS1 pos",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray([unitTestSupport.EigenVector3d2np(CSS1.nHat_B)], dataCSS1nHat,
accuracy, "CSS1 nHat_B",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS1.fov], dataCSS1fov,
accuracy, "CSS1 fov",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS1.maxOutput], dataCSS1signal,
accuracy, "CSS1 maxSignal",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([0.0], dataCSS1minSignal,
accuracy, "CSS1 minSignal",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS1.maxOutput], dataCSS1maxSignal,
accuracy, "CSS1 maxSignal",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([0], dataCSS1CSSGroupID,
accuracy, "CSS1 CSSGroupID",
testFailCount, testMessages)
# check CSS 2 output
testFailCount, testMessages = unitTestSupport.compareArray([unitTestSupport.EigenVector3d2np(CSS2.r_B)], dataCSS2pos,
accuracy, "CSS2 pos",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareArray([unitTestSupport.EigenVector3d2np(CSS2.nHat_B)], dataCSS2nHat,
accuracy, "CSS2 nHat_B",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS2.fov], dataCSS2fov,
accuracy, "CSS2 fov",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS2.minOutput], dataCSS2signal,
accuracy, "CSS2 signal",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS2.maxOutput], dataCSS2maxSignal,
accuracy, "CSS2 maxSignal",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS2.minOutput], dataCSS2minSignal,
accuracy, "CSS2 minSignal",
testFailCount, testMessages)
testFailCount, testMessages = unitTestSupport.compareDoubleArray([CSS2.CSSGroupID], dataCSS2CSSGroupID,
accuracy, "CSS2 CSSGroupID",
testFailCount, testMessages)
# print out success message if no error were found
if testFailCount == 0:
print("PASSED: CSS config test")
else:
print("FAILED: CSS config test")
# each test method requires a single assert method to be called
# this check below just makes sure no sub-test failures were found
return [testFailCount, ''.join(testMessages)]
#
if __name__ == "__main__":
run(
False, # show_plots
1e-12 # accuracy
)