Source code for scenario_OpNavPoint

#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This scenario only performs the pointing component to the OpNav FSW stack.
It uses Hough Circles to identify the planet center.
More details can be found in Chapter 2 of `Thibaud Teil's PhD thesis <http://hanspeterschaub.info/Papers/grads/ThibaudTeil.pdf>`_.

The script can be run at full length by calling::

    python3 scenario_OpNavPoint.py

"""

# Get current file path
import inspect
import os
import sys
import time

from Basilisk.utilities import RigidBodyKinematics as rbk
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np

# Import plotting file for your scenario
sys.path.append(path + '/../plottingOpNav')
import OpNav_Plotting as BSK_plt

# Create your own scenario child class
[docs]class scenario_OpNav(BSKScenario): """Main Simulation Class""" def __init__(self, masterSim, showPlots=False): super(scenario_OpNav, self).__init__(masterSim, showPlots) self.name = 'scenario_opnav' self.masterSim = masterSim self.filterUse = "bias" #"relOD" # declare additional class variables self.rwMotorRec = None self.opNavRec = None self.attGuidRec = None self.circlesRec = None self.scRec = None self.rwLogs = []
[docs] def configure_initial_conditions(self): # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 18000*1E3 # meters oe.e = 0. oe.i = 20 * macros.D2R oe.Omega = 25. * macros.D2R oe.omega = 190. * macros.D2R oe.f = 100. * macros.D2R # 90 good mu = self.masterSim.get_DynModel().gravFactory.gravBodies['mars barycenter'].mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] MRP= [0,0,0] if self.filterUse == "relOD": self.masterSim.get_FswModel().relativeOD.stateInit = rN.tolist() + vN.tolist() if self.filterUse == "bias": self.masterSim.get_FswModel().pixelLineFilter.stateInit = rN.tolist() + vN.tolist() + bias self.masterSim.get_DynModel().scObject.hub.r_CN_NInit = rN self.masterSim.get_DynModel().scObject.hub.v_CN_NInit = vN self.masterSim.get_DynModel().scObject.hub.sigma_BNInit = [[MRP[0]], [MRP[1]], [MRP[2]]] # sigma_BN_B self.masterSim.get_DynModel().scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # rad/s - omega_BN_B # Search self.masterSim.get_FswModel().opNavPoint.omega_RN_B = [0.001, 0.0, -0.001]
[docs] def log_outputs(self): # Dynamics process outputs: log messages below if desired. FswModel = self.masterSim.get_FswModel() DynModel = self.masterSim.get_DynModel() # FSW process outputs samplingTime = FswModel.processTasksTimeStep self.opNavRec = FswModel.opnavMsg.recorder(samplingTime) self.attGuidRec = FswModel.attGuidMsg.recorder(samplingTime) self.rwMotorRec = FswModel.rwMotorTorque.rwMotorTorqueOutMsg.recorder(samplingTime) self.circlesRec = FswModel.opnavCirclesMsg.recorder(samplingTime) self.scRec = DynModel.scObject.scStateOutMsg.recorder(samplingTime) self.masterSim.AddModelToTask(DynModel.taskName, self.opNavRec) self.masterSim.AddModelToTask(DynModel.taskName, self.attGuidRec) self.masterSim.AddModelToTask(DynModel.taskName, self.rwMotorRec) self.masterSim.AddModelToTask(DynModel.taskName, self.circlesRec) self.masterSim.AddModelToTask(DynModel.taskName, self.scRec) self.rwLogs = [] for item in range(4): self.rwLogs.append(DynModel.rwStateEffector.rwOutMsgs[item].recorder(samplingTime)) self.masterSim.AddModelToTask(DynModel.taskName, self.rwLogs[item]) return
[docs] def pull_outputs(self, showPlots): ## Spacecraft true states position_N = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.r_BN_N) ## Attitude sigma_BN = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.sigma_BN) ## Image processing circleCenters = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.circlesCenters) circleRadii = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.circlesRadii) numRW = 4 dataUsReq = unitTestSupport.addTimeColumn(self.rwMotorRec.times(), self.rwMotorRec.motorTorque) dataRW = [] for i in range(numRW): dataRW.append(unitTestSupport.addTimeColumn(self.rwMotorRec.times(), self.rwLogs[i].u_current)) measPos = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.r_BN_N) r_C = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.r_BN_C) measCovar = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.covar_N) covar_C = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.covar_C) sigma_CB = self.masterSim.get_DynModel().cameraMRP_CB sizeMM = self.masterSim.get_DynModel().cameraSize sizeOfCam = self.masterSim.get_DynModel().cameraRez focal = self.masterSim.get_DynModel().cameraFocal # in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() pixCovar = np.ones([len(circleCenters[:,0]), 3*3+1]) pixCovar[:,0] = circleCenters[:,0] pixCovar[:,1:]*=np.array([1,0,0,0,1,0,0,0,2]) measError = np.full([len(measPos[:,0]), 4], np.nan) measError[:,0] = measPos[:,0] measError_C = np.full([len(measPos[:,0]), 5], np.nan) measError_C[:,0] = measPos[:,0] trueRhat_C = np.full([len(circleCenters[:,0]), 4], np.nan) trueCircles = np.full([len(circleCenters[:,0]), 4], np.nan) trueCircles[:,0] = circleCenters[:,0] trueRhat_C[:,0] = circleCenters[:,0] centerBias = np.copy(circleCenters) radBias = np.copy(circleRadii) ModeIdx = 0 Rmars = 3396.19*1E3 for j in range(len(position_N[:, 0])): if position_N[j, 0] in circleCenters[:, 0]: ModeIdx = j break for i in range(len(circleCenters[:,0])): if circleCenters[i,1:].any() > 1E-8 or circleCenters[i,1:].any() < -1E-8: trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[ModeIdx+i , 1:4])) ,position_N[ModeIdx+i, 1:4])/np.linalg.norm(position_N[ModeIdx+i, 1:4]) trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[ModeIdx+i,1:4])))/pixelSize[0] trueRhat_C[i,1:] *= focal/trueRhat_C[i,3] trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5 trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5 measError[i, 1:4] = position_N[ModeIdx+i, 1:4] - measPos[i, 1:4] measError_C[i, 4] = np.linalg.norm(position_N[ModeIdx+i, 1:4]) - np.linalg.norm(r_C[i, 1:4]) measError_C[i, 1:4] = trueRhat_C[i,1:] - r_C[i, 1:4]/np.linalg.norm(r_C[i, 1:4]) else: measCovar[i,1:] = np.full(3*3, np.nan) covar_C[i, 1:] = np.full(3 * 3, np.nan) timeData = position_N[:, 0] * macros.NANO2MIN BSK_plt.plot_rw_motor_torque(timeData, dataUsReq, dataRW, numRW) BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam)) figureList = {} if showPlots: BSK_plt.show_all_plots() else: fileName = os.path.basename(os.path.splitext(__file__)[0]) figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"] figureList = BSK_plt.save_all_plots(fileName, figureNames) return figureList
def run(showPlots, simTime=None): # Instantiate base simulation TheBSKSim = BSKSim(fswRate=0.5, dynRate=0.5) TheBSKSim.set_DynModel(BSK_OpNavDynamics) TheBSKSim.set_FswModel(BSK_OpNavFsw) # Configure a scenario in the base simulation TheScenario = scenario_OpNav(TheBSKSim, showPlots) if showPlots: TheScenario.log_outputs() TheScenario.configure_initial_conditions() TheBSKSim.get_DynModel().cameraMod.saveImages = 0 # opNavMode 1 is used for viewing the spacecraft as it navigates, opNavMode 2 is for headless camera simulation TheBSKSim.get_DynModel().vizInterface.opNavMode = 2 # The following code spawns the Vizard application from python mode = ["None", "-directComm", "-noDisplay"] TheScenario.run_vizard(mode[TheBSKSim.get_DynModel().vizInterface.opNavMode]) # Configure FSW mode TheScenario.masterSim.modeRequest = 'pointOpNav' # Initialize simulation TheBSKSim.InitializeSimulation() # Configure run time and execute simulation if simTime != None: simulationTime = macros.min2nano(simTime) else: simulationTime = macros.min2nano(200) TheBSKSim.ConfigureStopTime(simulationTime) print('Starting Execution') t1 = time.time() TheBSKSim.ExecuteSimulation() t2 = time.time() print('Finished Execution in ', t2-t1, ' seconds. Post-processing results') # Terminate vizard and show plots figureList = TheScenario.end_scenario() return figureList if __name__ == "__main__": run(True)