#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------
This scenario uses the OpNav FSW stack to perform both pointing towards the target planet, and Orbit Determination.
As the primary scenario for OpNav, it will be detailed more carefully.
The orbit is a 18,000km orbit around Mars, with eccentricity of 0.6, and is pictured alongside the measurements:
.. image:: /_images/static/Orbit_OpNav.svg
:width: 500px
:align: center
Hough Circles is the image processing method used. After processing measurements through a Orbit Determination Filter,
spacecraft position and velocity estimates are pictured in the Mars-frame:
.. image:: /_images/static/Filterpos1_1.svg
:width: 300
.. image:: /_images/static/Filtervel1_1.svg
:width: 300
.. image:: /_images/static/Filterpos2_1.svg
:width: 300
.. image:: /_images/static/Filtervel2_1.svg
:width: 300
.. image:: /_images/static/Filterpos3_1.svg
:width: 300
.. image:: /_images/static/Filtervel3_1.svg
:width: 300
More details can be found in Chapter 2 of `Thibaud Teil's PhD thesis <http://hanspeterschaub.info/Papers/grads/ThibaudTeil.pdf>`_.
The script can be run at full length by calling::
python3 scenario_OpNavAttOD.py
"""
# Get current file path
import inspect
import os
import sys
import time
from Basilisk.utilities import RigidBodyKinematics as rbk
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np
# Import plotting file for your scenario
sys.path.append(path + '/../plottingOpNav')
import OpNav_Plotting as BSK_plt
# Create your own scenario child class
[docs]
class scenario_OpNav(BSKScenario):
"""Main Simulation Class"""
def __init__(self, masterSim, showPlots=False):
super(scenario_OpNav, self).__init__(masterSim, showPlots)
self.name = 'scenario_opnav'
self.masterSim = masterSim
self.filterUse = "relOD"
# declare additional class variables
self.opNavRec = None
self.circlesRec = None
self.scRec = None
self.filtRec = None
# self.masterSim.get_DynModel().cameraMod.blurParam = 5
[docs]
def log_outputs(self):
# Dynamics process outputs: log messages below if desired.
FswModel = self.masterSim.get_FswModel()
DynModel = self.masterSim.get_DynModel()
# FSW process outputs
samplingTime = self.masterSim.get_FswModel().processTasksTimeStep
if self.filterUse == "relOD":
self.filtRec = FswModel.relativeOD.filtDataOutMsg.recorder(samplingTime)
self.masterSim.AddModelToTask(DynModel.taskName, self.filtRec)
self.opNavRec = FswModel.opnavMsg.recorder(samplingTime)
self.masterSim.AddModelToTask(DynModel.taskName, self.opNavRec)
if self.filterUse == "bias":
self.filtRec = FswModel.pixelLineFilter.filtDataOutMsg.recorder(samplingTime)
self.masterSim.AddModelToTask(DynModel.taskName, self.filtRec)
self.scRec = DynModel.scObject.scStateOutMsg.recorder(samplingTime)
self.circlesRec = FswModel.opnavCirclesMsg.recorder(samplingTime)
self.masterSim.AddModelToTask(DynModel.taskName, self.scRec)
self.masterSim.AddModelToTask(DynModel.taskName, self.circlesRec)
return
[docs]
def pull_outputs(self, showPlots):
## Spacecraft true states
position_N = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.r_BN_N)
velocity_N = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.v_BN_N)
## Attitude
sigma_BN = unitTestSupport.addTimeColumn(self.scRec.times(), self.scRec.sigma_BN)
## Image processing
circleCenters = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.circlesCenters)
circleRadii = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.circlesRadii)
validCircle = unitTestSupport.addTimeColumn(self.circlesRec.times(), self.circlesRec.valid)
if self.filterUse == "bias":
NUM_STATES = 9
## Navigation results
navState = unitTestSupport.addTimeColumn(self.filtRec.times(), self.filtRec.state)
navCovar = unitTestSupport.addTimeColumn(self.filtRec.times(), self.filtRec.covar)
navPostFits = unitTestSupport.addTimeColumn(self.filtRec.times(), self.filtRec.postFitRes)
if self.filterUse == "relOD":
NUM_STATES = 6
## Navigation results
navState = unitTestSupport.addTimeColumn(self.filtRec.times(), self.filtRec.state)
navCovar = unitTestSupport.addTimeColumn(self.filtRec.times(), self.filtRec.covar)
navPostFits = unitTestSupport.addTimeColumn(self.filtRec.times(), self.filtRec.postFitRes)
measPos = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.r_BN_N)
r_C = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.r_BN_C)
measCovar = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.covar_N)
covar_C = unitTestSupport.addTimeColumn(self.opNavRec.times(), self.opNavRec.covar_C)
sigma_CB = self.masterSim.get_DynModel().cameraMRP_CB
sizeMM = self.masterSim.get_DynModel().cameraSize
sizeOfCam = self.masterSim.get_DynModel().cameraRez
focal = self.masterSim.get_DynModel().cameraFocal #in m
pixelSize = []
pixelSize.append(sizeMM[0] / sizeOfCam[0])
pixelSize.append(sizeMM[1] / sizeOfCam[1])
dcm_CB = rbk.MRP2C(sigma_CB)
# Plot results
BSK_plt.clear_all_plots()
stateError = np.zeros([len(position_N[:,0]), NUM_STATES+1])
navCovarLong = np.full([len(position_N[:,0]), 1+NUM_STATES*NUM_STATES], np.nan)
navCovarLong[:,0] = np.copy(position_N[:,0])
stateError[:, 0:4] = np.copy(position_N)
stateError[:,4:7] = np.copy(velocity_N[:,1:])
pixCovar = np.ones([len(circleCenters[:,0]), 3*3+1])
pixCovar[:,0] = circleCenters[:,0]
pixCovar[:,1:]*=np.array([1,0,0,0,1,0,0,0,2])
if self.filterUse == "relOD":
measError = np.full([len(measPos[:,0]), 4], np.nan)
measError[:,0] = measPos[:,0]
measError_C = np.full([len(measPos[:,0]), 5], np.nan)
measError_C[:,0] = measPos[:,0]
trueRhat_C = np.full([len(circleCenters[:,0]), 4], np.nan)
trueR_C = np.full([len(circleCenters[:,0]), 4], np.nan)
trueCircles = np.full([len(circleCenters[:,0]), 4], np.nan)
trueCircles[:,0] = circleCenters[:,0]
trueRhat_C[:,0] = circleCenters[:,0]
trueR_C[:,0] = circleCenters[:,0]
truth = np.zeros([len(position_N[:,0]), 7])
truth[:,0:4] = np.copy(position_N)
truth[:,4:7] = np.copy(velocity_N[:,1:])
centerBias = np.copy(circleCenters)
radBias = np.copy(circleRadii)
switchIdx = 0
Rmars = 3396.19*1E3
for j in range(len(stateError[:, 0])):
if stateError[j, 0] in navState[:, 0]:
stateError[j, 1:4] -= navState[j - switchIdx, 1:4]
stateError[j, 4:] -= navState[j - switchIdx, 4:]
else:
stateError[j, 1:] = np.full(NUM_STATES, np.nan)
switchIdx += 1
for i in range(len(circleCenters[:,0])):
if circleCenters[i,1:].any() > 1E-8 or circleCenters[i,1:].any() < -1E-8:
trueR_C[i, 1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i + switchIdx, 1:4])),
position_N[i + switchIdx, 1:4])
trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i +switchIdx, 1:4])) ,position_N[i +switchIdx, 1:4])/np.linalg.norm(position_N[i +switchIdx, 1:4])
trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[i,1:4])))/pixelSize[0]
trueRhat_C[i,1:] *= focal/trueRhat_C[i,3]
trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5
trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5
if self.filterUse == "bias":
centerBias[i,1:3] = np.round(navState[i, 7:9])
radBias[i,1] = np.round(navState[i, -1])
if self.filterUse == "relOD":
measError[i, 1:4] = position_N[i +switchIdx, 1:4] - measPos[i, 1:4]
measError_C[i, 4] = np.linalg.norm(position_N[i +switchIdx, 1:4]) - np.linalg.norm(r_C[i, 1:4])
measError_C[i, 1:4] = trueRhat_C[i,1:] - r_C[i, 1:4]/np.linalg.norm(r_C[i, 1:4])
else:
if self.filterUse == "relOD":
measCovar[i,1:] = np.full(3*3, np.nan)
covar_C[i, 1:] = np.full(3 * 3, np.nan)
navCovarLong[switchIdx:,:] = np.copy(navCovar)
BSK_plt.plot_TwoOrbits(position_N[switchIdx:,:], measPos)
BSK_plt.diff_vectors(trueR_C, r_C, validCircle, "Circ")
BSK_plt.nav_percentages(truth[switchIdx:,:], navState, navCovar, validCircle, "Circ")
BSK_plt.plot_cirlces(circleCenters, circleRadii, validCircle, sizeOfCam)
BSK_plt.plotStateCovarPlot(stateError, navCovarLong)
if self.filterUse == "bias":
circleCenters[i,1:] += centerBias[i,1:]
circleRadii[i,1:] += radBias[i,1:]
BSK_plt.plotPostFitResiduals(navPostFits, pixCovar)
BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam))
if self.filterUse == "relOD":
BSK_plt.plotPostFitResiduals(navPostFits, measCovar)
figureList = {}
if showPlots:
BSK_plt.show_all_plots()
else:
fileName = os.path.basename(os.path.splitext(__file__)[0])
figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"]
figureList = BSK_plt.save_all_plots(fileName, figureNames)
return figureList
def run(showPlots, simTime=None):
# Instantiate base simulation
TheBSKSim = BSKSim(fswRate=0.5, dynRate=0.5)
TheBSKSim.set_DynModel(BSK_OpNavDynamics)
TheBSKSim.set_FswModel(BSK_OpNavFsw)
# Configure a scenario in the base simulation
TheScenario = scenario_OpNav(TheBSKSim, showPlots)
TheScenario.filterUse = "relOD"
TheScenario.log_outputs()
TheScenario.configure_initial_conditions()
TheBSKSim.get_DynModel().cameraMod.saveImages = 0
# liveStream is used for viewing the spacecraft as it navigates, noDisplay is for headless camera simulation
TheBSKSim.get_DynModel().vizInterface.noDisplay = True
# The following code spawns the Vizard application from python
# Modes: "None", "-directComm", "-noDisplay"
TheScenario.run_vizard("-noDisplay")
# Configure FSW mode
TheScenario.masterSim.modeRequest = 'prepOpNav'
# Initialize simulation
TheBSKSim.InitializeSimulation()
# Configure run time and execute simulation
simulationTime = macros.min2nano(3.)
TheBSKSim.ConfigureStopTime(simulationTime)
print('Starting Execution')
t1 = time.time()
TheBSKSim.ExecuteSimulation()
if TheScenario.filterUse == "bias":
TheScenario.masterSim.modeRequest = 'OpNavAttODB'
if TheScenario.filterUse == "relOD":
TheScenario.masterSim.modeRequest = 'OpNavAttOD'
if simTime != None:
simulationTime = macros.min2nano(simTime)
else:
simulationTime = macros.min2nano(600)
TheBSKSim.ConfigureStopTime(simulationTime)
TheBSKSim.ExecuteSimulation()
t2 = time.time()
print('Finished Execution in ', t2-t1, ' seconds. Post-processing results')
# Terminate vizard and show plots
figureList = TheScenario.end_scenario()
return figureList
if __name__ == "__main__":
run(True)