Source code for scenario_CNNImages

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------

This script is called by OpNavScenarios/CNN_ImageGen/OpNavMonteCarlo.py in order to generate images.

"""
# Get current file path
import inspect
import os
import subprocess
import sys

from Basilisk.utilities import RigidBodyKinematics as rbk
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/../..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np

# Import plotting file for your scenario
sys.path.append(path + '/../../plottingOpNav')
import OpNav_Plotting as BSK_plt

# Create your own scenario child class
[docs] class scenario_OpNav(BSKSim): """Main Simulation Class""" def __init__(self): super(scenario_OpNav, self).__init__(BSKSim) self.fswRate = 0.5 self.dynRate = 0.5 self.set_DynModel(BSK_OpNavDynamics) self.set_FswModel(BSK_OpNavFsw) self.name = 'scenario_opnav' self.filterUse = "bias" #"relOD" self.configure_initial_conditions() # set recorded message information self.msgRecList = {} self.retainedMessageName1 = "scMsg" self.retainedMessageName2 = "circlesMsg" self.var1 = "r_BN_N" self.var2 = "sigma_BN" self.var3 = "valid" def configure_initial_conditions(self): # Configure Dynamics initial conditions oe = orbitalMotion.ClassicElements() oe.a = 18000*1E3 # meters oe.e = 0. oe.i = 20 * macros.D2R oe.Omega = 25. * macros.D2R oe.omega = 190. * macros.D2R oe.f = 100. * macros.D2R #90 good mu = self.get_DynModel().gravFactory.gravBodies['mars barycenter'].mu rN, vN = orbitalMotion.elem2rv(mu, oe) orbitalMotion.rv2elem(mu, rN, vN) bias = [0, 0, -2] MRP= [0,0,0] if self.filterUse =="relOD": self.get_FswModel().relativeOD.stateInit = rN.tolist() + vN.tolist() if self.filterUse == "bias": self.get_FswModel().pixelLineFilter.stateInit = rN.tolist() + vN.tolist() + bias # self.get_DynModel().scObject.hub.r_CN_NInit = rN # m - r_CN_N # self.get_DynModel().scObject.hub.v_CN_NInit = vN # m/s - v_CN_N self.get_DynModel().scObject.hub.sigma_BNInit = [[MRP[0]], [MRP[1]], [MRP[2]]] # sigma_BN_B self.get_DynModel().scObject.hub.omega_BN_BInit = [[0.0], [0.0], [0.0]] # rad/s - omega_BN_B self.get_DynModel().cameraMod.fieldOfView = np.deg2rad(55) def log_outputs(self): # Dynamics process outputs: log messages below if desired. FswModel = self.get_FswModel() DynModel = self.get_DynModel() # FSW process outputs samplingTime = self.get_FswModel().processTasksTimeStep self.msgRecList[self.retainedMessageName1] = DynModel.scObject.scStateOutMsg.recorder(samplingTime) self.AddModelToTask(DynModel.taskName, self.msgRecList[self.retainedMessageName1]) self.msgRecList[self.retainedMessageName2] = FswModel.opnavCirclesMsg.recorder(samplingTime) self.AddModelToTask(DynModel.taskName, self.msgRecList[self.retainedMessageName2]) return def pull_outputs(self, showPlots): ## Spacecraft true states scStates = self.msgRecList[self.retainedMessageName1] position_N = unitTestSupport.addTimeColumn(scStates.times(), scStates.r_BN_N) sigma_BN = unitTestSupport.addTimeColumn(scStates.times(), scStates.sigma_BN) ## Image processing circleStates = self.scRecmsgRecList[self.retainedMessageName2] validCircle = unitTestSupport.addTimeColumn(circleStates.times(), circleStates.valid) sigma_CB = self.get_DynModel().cameraMRP_CB sizeMM = self.get_DynModel().cameraSize sizeOfCam = self.get_DynModel().cameraRez focal = self.get_DynModel().cameraFocal #in m pixelSize = [] pixelSize.append(sizeMM[0] / sizeOfCam[0]) pixelSize.append(sizeMM[1] / sizeOfCam[1]) dcm_CB = rbk.MRP2C(sigma_CB) # Plot results BSK_plt.clear_all_plots() trueRhat_C = np.full([len(validCircle[:,0]), 4], np.nan) trueCircles = np.full([len(validCircle[:,0]), 4], np.nan) trueCircles[:,0] = validCircle[:,0] trueRhat_C[:,0] = validCircle[:,0] ModeIdx = 0 Rmars = 3396.19*1E3 for j in range(len(position_N[:, 0])): if position_N[j, 0] in validCircle[:, 0]: ModeIdx = j break for i in range(len(validCircle[:,0])): if validCircle[i,1] > 1E-5: trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[ModeIdx+i , 1:4])) ,position_N[ModeIdx+i, 1:4])/np.linalg.norm(position_N[ModeIdx+i, 1:4]) trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[ModeIdx+i,1:4])))/pixelSize[0] trueRhat_C[i,1:] *= focal/trueRhat_C[i,3] trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5 trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5 return
def run(TheScenario, runLog): TheBskScenario = BSKScenario TheScenario.log_outputs() TheScenario.configure_initial_conditions() if not os.path.exists(runLog): os.makedirs(runLog) TheScenario.get_DynModel().cameraMod.fieldOfView = np.deg2rad(55) # in degrees TheScenario.get_DynModel().cameraMod.cameraIsOn = 1 TheScenario.get_DynModel().cameraMod.saveImages = 1 TheScenario.get_DynModel().cameraMod.saveDir = runLog.split('/')[-2] +'/' +runLog.split('/')[-1] + '/' TheScenario.get_DynModel().vizInterface.noDisplay = True # Modes: "None", "-directComm", "-noDisplay" # The following code spawns the Vizard application from python as a function of the mode selected above, and the platform. TheScenario.vizard = subprocess.Popen( [TheScenario.vizPath, "--args", "-noDisplay", "tcp://localhost:5556"], stdout=subprocess.DEVNULL) print("Vizard spawned with PID = " + str(TheScenario.vizard.pid)) # Configure FSW mode TheScenario.modeRequest = 'imageGen' # Initialize simulation TheScenario.InitializeSimulation() # Configure run time and execute simulation simulationTime = macros.min2nano(100.) TheScenario.ConfigureStopTime(simulationTime) print('Starting Execution') TheScenario.ExecuteSimulation() TheScenario.vizard.kill() spice = TheScenario.get_DynModel().spiceObject spice.unloadSpiceKernel(spice.SPICEDataPath, 'de430.bsp') spice.unloadSpiceKernel(spice.SPICEDataPath, 'naif0012.tls') spice.unloadSpiceKernel(spice.SPICEDataPath, 'de-403-masses.tpc') spice.unloadSpiceKernel(spice.SPICEDataPath, 'pck00010.tpc') return if __name__ == "__main__": # Instantiate base simulation # Configure a scenario in the base simulation TheScenario = scenario_OpNav() run(TheScenario, os.path.abspath(os.path.dirname(__file__)) + "/cnn_MC_data")