#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------
This script demonstrates how to alternate between two different FSW modes
``inertia3D`` and ``hillPoint``.
Illustration of Simulation Results
----------------------------------
::
showPlots = True
.. image:: /_images/Scenarios/scenario_AttModes_rateError.svg
:align: center
.. image:: /_images/Scenarios/scenario_AttModes_attitudeErrorNorm.svg
:align: center
"""
# Get current file path
import inspect
import os
import sys
import numpy as np
from Basilisk.utilities import orbitalMotion, macros
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/../')
sys.path.append(path + '/../models')
sys.path.append(path + '/../plotting')
from BSK_masters import BSKSim, BSKScenario
import BSK_Dynamics, BSK_Fsw
import BSK_Plotting as BSK_plt
# Create your own scenario child class
[docs]
class scenario_AttModes(BSKSim, BSKScenario):
def __init__(self):
super(scenario_AttModes, self).__init__()
self.name = 'scenario_AttModes'
# declare additional class variables
self.msgRecList = {}
self.sNavTransName = "sNavTransMsg"
self.attGuidName = "attGuidMsg"
self.set_DynModel(BSK_Dynamics)
self.set_FswModel(BSK_Fsw)
self.configure_initial_conditions()
self.log_outputs()
# if this scenario is to interface with the BSK Viz, uncomment the following line
DynModels = self.get_DynModel()
# vizSupport.enableUnityVisualization(self, DynModels.taskName, DynModels.scObject
# # , saveFile=__file__
# , rwEffectorList=DynModels.rwStateEffector
# )
[docs]
def log_outputs(self):
FswModel = self.get_FswModel()
DynModel = self.get_DynModel()
samplingTime = FswModel.processTasksTimeStep
self.msgRecList[self.attGuidName] = FswModel.attGuidMsg.recorder(samplingTime)
self.AddModelToTask(DynModel.taskName, self.msgRecList[self.attGuidName])
self.msgRecList[self.sNavTransName] = DynModel.simpleNavObject.transOutMsg.recorder(samplingTime)
self.AddModelToTask(DynModel.taskName, self.msgRecList[self.sNavTransName])
return
[docs]
def pull_outputs(self, showPlots):
# FSW process outputs, remove first data point as it is before FSW is called
attErrRec = self.msgRecList[self.attGuidName]
sigma_BR = np.delete(attErrRec.sigma_BR, 0, 0)
omega_BR_B = np.delete(attErrRec.omega_BR_B, 0, 0)
# Plot results
BSK_plt.clear_all_plots()
timeData = np.delete(attErrRec.times(), 0, 0) * macros.NANO2MIN
BSK_plt.plot_attitude_error(timeData, sigma_BR)
BSK_plt.plot_rate_error(timeData, omega_BR_B)
figureList = {}
if showPlots:
BSK_plt.show_all_plots()
else:
fileName = os.path.basename(os.path.splitext(__file__)[0])
figureNames = ["attitudeErrorNorm", "rateError"]
figureList = BSK_plt.save_all_plots(fileName, figureNames)
return figureList
[docs]
def runScenario(scenario):
"""method to initialize and execute the scenario"""
simulationTime = macros.min2nano(30.)
scenario.InitializeSimulation()
attitudeModeTime = macros.min2nano(10.)
attitudeMode = ["hillPoint", "inertial3D"]
currentSimulationTime = 0
while currentSimulationTime < simulationTime:
# Configure alternating FSW mode
scenario.modeRequest = attitudeMode[int((currentSimulationTime / attitudeModeTime) % len(attitudeMode))]
# Add the attitude mode time to the current simulation time
currentSimulationTime += attitudeModeTime
# Run the simulation
scenario.ConfigureStopTime(currentSimulationTime)
scenario.ExecuteSimulation()
return
[docs]
def run(showPlots):
"""
The scenarios can be run with the followings setups parameters:
Args:
showPlots (bool): Determines if the script should display plots
"""
scenario = scenario_AttModes()
runScenario(scenario)
figureList = scenario.pull_outputs(showPlots)
return figureList
if __name__ == "__main__":
run(True)