#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------
This script sets up a 6-DOF spacecraft orbiting Earth. The goal of the scenario is to
make use of the hill pointing module with
the :ref:`mrpFeedback` module and a reaction wheel pyramid
to control the attitude all within the new BSK_Sim architecture.
The script is found in the folder ``basilisk/examples/BskSim/scenarios`` and executed by using::
python3 scenario_AttGuidance.py
The simulation mimics the basic simulation simulation in the earlier tutorial in
:ref:`scenarioAttitudeGuidance`.
The simulation layout is shown in the following illustration.
.. image:: /_images/static/test_scenario_AttGuidance.svg
:align: center
The initial setup for the simulation closely models that of :ref:`scenario_FeedbackRW`.
Custom Dynamics Configurations Instructions
-------------------------------------------
The modules required for this scenario are identical to those used in :ref:`scenario_FeedbackRW`.
Custom FSW Configurations Instructions
--------------------------------------
Three of the four modules required to configure the :ref:`hillPoint` FSW mode have already been included
within the :ref:`BSK_FSW` framework
(``mrpFeedbackRWConfig()``, ``attTrackingErrorConfig()``, ``rwMotorTorqueConfig()``). The only remaining
module is the hill pointing module itself which is set within ``__init__()``.
These modules provide the initial setup for an attitude guidance system that makes use of an hill
pointing model, a module
that tracks the error of the spacecraft's MRP parameters against the vector pointing towards the central, planetary
body, and uses a module that takes that information to provide a torque to correct for the error.
This event is triggered when a user calls `self.masterSim.modeRequest = 'hillPoint'` in any
current or future :ref:`Folder_BskSim` file.
Illustration of Simulation Results
----------------------------------
::
showPlots = True
.. image:: /_images/Scenarios/scenario_AttGuidance_attitudeErrorNorm.svg
:align: center
.. image:: /_images/Scenarios/scenario_AttGuidance_rwMotorTorque.svg
:align: center
.. image:: /_images/Scenarios/scenario_AttGuidance_rateError.svg
:align: center
.. image:: /_images/Scenarios/scenario_AttGuidance_orientation.svg
:align: center
"""
# Get current file path
import inspect
import os
import sys
import numpy as np
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, vizSupport
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_masters import BSKSim, BSKScenario
import BSK_Dynamics, BSK_Fsw
# Import plotting files for your scenario
sys.path.append(path + '/../plotting')
import BSK_Plotting as BSK_plt
# Create your own scenario child class
[docs]
class scenario_HillPointing(BSKSim, BSKScenario):
def __init__(self):
super(scenario_HillPointing, self).__init__()
self.name = 'scenario_AttGuidance'
# declare additional class variables
self.attNavRec = None
self.transNavRec = None
self.attErrRec = None
self.attRefRec = None
self.LrRec = None
self.set_DynModel(BSK_Dynamics)
self.set_FswModel(BSK_Fsw)
self.configure_initial_conditions()
self.log_outputs()
# if this scenario is to interface with the BSK Viz, uncomment the following line
DynModels = self.get_DynModel()
vizSupport.enableUnityVisualization(self, DynModels.taskName, DynModels.scObject
# , saveFile=__file__
, rwEffectorList=DynModels.rwStateEffector
)
[docs]
def log_outputs(self):
FswModel = self.get_FswModel()
DynModel = self.get_DynModel()
samplingTime = FswModel.processTasksTimeStep
# Dynamics process outputs
self.attNavRec = DynModel.simpleNavObject.attOutMsg.recorder(samplingTime)
self.transNavRec = DynModel.simpleNavObject.transOutMsg.recorder(samplingTime)
# FSW process outputs
self.attRefRec = FswModel.attRefMsg.recorder(samplingTime)
self.attErrRec = FswModel.attGuidMsg.recorder(samplingTime)
self.LrRec = FswModel.cmdTorqueMsg.recorder(samplingTime)
self.AddModelToTask(DynModel.taskName, self.attNavRec)
self.AddModelToTask(DynModel.taskName, self.transNavRec)
self.AddModelToTask(DynModel.taskName, self.attRefRec)
self.AddModelToTask(DynModel.taskName, self.attErrRec)
self.AddModelToTask(DynModel.taskName, self.LrRec)
[docs]
def pull_outputs(self, showPlots):
# Dynamics process outputs
sigma_BN = np.delete(self.attNavRec.sigma_BN, 0, 0)
r_BN_N = np.delete(self.transNavRec.r_BN_N, 0, 0)
v_BN_N = np.delete(self.transNavRec.v_BN_N, 0, 0)
# FSW process outputs
sigma_RN = np.delete(self.attRefRec.sigma_RN, 0, 0)
omega_RN_N = np.delete(self.attRefRec.omega_RN_N, 0, 0)
sigma_BR = np.delete(self.attErrRec.sigma_BR, 0, 0)
omega_BR_B = np.delete(self.attErrRec.omega_BR_B, 0, 0)
Lr = np.delete(self.LrRec.torqueRequestBody, 0, 0)
# Plot results
BSK_plt.clear_all_plots()
timeLineSet = np.delete(self.attNavRec.times(), 0, 0) * macros.NANO2MIN
BSK_plt.plot_attitude_error(timeLineSet, sigma_BR)
BSK_plt.plot_control_torque(timeLineSet, Lr)
BSK_plt.plot_rate_error(timeLineSet, omega_BR_B)
BSK_plt.plot_orientation(timeLineSet, r_BN_N, v_BN_N, sigma_BN)
BSK_plt.plot_attitudeGuidance(timeLineSet, sigma_RN, omega_RN_N)
figureList = {}
if showPlots:
BSK_plt.show_all_plots()
else:
fileName = os.path.basename(os.path.splitext(__file__)[0])
figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "orientation", "attitudeGuidance"]
figureList = BSK_plt.save_all_plots(fileName, figureNames)
return figureList
def runScenario(TheScenario):
# Initialize simulation
TheScenario.InitializeSimulation()
# Configure FSW mode
TheScenario.modeRequest = 'hillPoint'
# Configure run time and execute simulation
simulationTime = macros.min2nano(10.)
TheScenario.ConfigureStopTime(simulationTime)
TheScenario.ExecuteSimulation()
[docs]
def run(showPlots):
"""
The scenarios can be run with the followings setups parameters:
Args:
showPlots (bool): Determines if the script should display plots
"""
# Instantiate base simulation
scenario = scenario_HillPointing()
runScenario(scenario)
figureList = scenario.pull_outputs(showPlots)
return figureList
if __name__ == "__main__":
run(True)