Source code for scenarioTempMeasurementAttitude

#
#  ISC License
#
#  Copyright (c) 2024, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

r"""
Overview
--------

This scenario illustrates how to add a RW temperature sensor and include some random noise
in the temperature measurement.  The RW-based attitude control component is based on
:ref:`scenarioAttitudeFeedbackRW`. This scenario uses the :ref:`motorThermal` module model
the true temperature data from reaction wheels and :ref:`tempMeasurement` module for
adding noise into the temperature readings.

.. caution::
    For the :ref:`tempMeasurement` module to provide random noise it is critical that the module
    variable ``RNGSeed`` is set to a unique value.  Setting it to the same value will result
    in the same random numbers being generated each run.


Illustration of Simulation Results
----------------------------------

::

    show_plots = True

The following plots illustrate the true temperature of the RWs and the measurement with noise.

.. image:: /_images/Scenarios/scenarioTempMeasurementAttitude1.svg
   :align: center

.. image:: /_images/Scenarios/scenarioTempMeasurementAttitude2.svg
   :align: center


"""

#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  This scenario illustrates the use of tempMeasurement module and generating random noise in the measurement.
# Author: Yumeka Nagano
# Creation Date:  May 10, 2024
#

import os

import matplotlib.pyplot as plt
import numpy as np
import time
# The path to the location of Basilisk
# Used to get the location of supporting data.
from Basilisk import __path__
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import (mrpFeedback, attTrackingError,
                                    inertial3D, rwMotorTorque)
from Basilisk.simulation import (reactionWheelStateEffector, simpleNav,
                                 spacecraft, motorThermal, tempMeasurement)
from Basilisk.utilities import (SimulationBaseClass, fswSetupRW, macros,
                                orbitalMotion, simIncludeGravBody,
                                simIncludeRW, unitTestSupport, vizSupport)

bskPath = __path__[0]
fileName = os.path.basename(os.path.splitext(__file__)[0])


# Plotting functions
[docs] def plot_rw_temperature(timeData, dataTemp, numRW, id=None): """Plot the reaction wheel temperatures""" plt.figure(id) for idx in range(numRW): plt.plot(timeData, dataTemp[:,idx], color=unitTestSupport.getLineColor(idx, numRW), label='$T_{rw,' + str(idx+1) + '}$') plt.legend(loc='lower right') plt.xlabel('Time [min]') plt.ylabel('RW Temperatures [ºC]') return
[docs] def plot_rw_temp_measurement(timeData, dataTemp, numRW, id=None): """Plot the reaction wheel temperature measurements""" plt.figure(id) for idx in range(numRW): plt.plot(timeData, dataTemp[:,idx], color=unitTestSupport.getLineColor(idx, numRW), label='$T_{rw,' + str(idx+1) + '}$') plt.legend(loc='lower right') plt.xlabel('Time [min]') plt.ylabel('Temp Measurements [ºC]') return
[docs] def run(show_plots): """ The scenarios can be run with the followings setups parameters: Args: show_plots (bool): Determines if the script should display plots """ # Create simulation variable names simTaskName = "simTask" simProcessName = "simProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() # set the simulation time variable used later on simulationTime = macros.min2nano(10.) # # create the simulation process # dynProcess = scSim.CreateNewProcess(simProcessName) # create the dynamics task and specify the integration update time simulationTimeStep = macros.sec2nano(.1) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # # setup the simulation tasks/objects # # initialize spacecraft object and set properties scObject = spacecraft.Spacecraft() scObject.ModelTag = "bsk-Sat" # define the simulation inertia I = [900., 0., 0., 0., 800., 0., 0., 0., 600.] scObject.hub.mHub = 750.0 # kg - spacecraft mass scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]] # m - position vector of body-fixed point B relative to CM scObject.hub.IHubPntBc_B = unitTestSupport.np2EigenMatrix3d(I) # add spacecraft object to the simulation process scSim.AddModelToTask(simTaskName, scObject, 1) # clear prior gravitational body and SPICE setup definitions gravFactory = simIncludeGravBody.gravBodyFactory() # setup Earth Gravity Body earth = gravFactory.createEarth() earth.isCentralBody = True # ensure this is the central gravitational body mu = earth.mu # attach gravity model to spacecraft gravFactory.addBodiesTo(scObject) # # add RW devices # # Make a fresh RW factory instance, this is critical to run multiple times rwFactory = simIncludeRW.rwFactory() # store the RW dynamical model type varRWModel = messaging.BalancedWheels # create each RW by specifying the RW type, the spin axis gsHat, plus optional arguments RW1 = rwFactory.create('Honeywell_HR16', [1, 0, 0], maxMomentum=50., Omega=100. # RPM , RWModel=varRWModel ) RW2 = rwFactory.create('Honeywell_HR16', [0, 1, 0], maxMomentum=50., Omega=200. # RPM , RWModel=varRWModel ) RW3 = rwFactory.create('Honeywell_HR16', [0, 0, 1], maxMomentum=50., Omega=300. # RPM , rWB_B=[0.5, 0.5, 0.5] # meters , RWModel=varRWModel ) # In this simulation the RW objects RW1, RW2 or RW3 are not modified further. However, you can over-ride # any values generate in the `.create()` process using for example RW1.Omega_max = 100. to change the # maximum wheel speed. numRW = rwFactory.getNumOfDevices() # create RW object container and tie to spacecraft object rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector() rwStateEffector.ModelTag = "RW_cluster" rwFactory.addToSpacecraft(scObject.ModelTag, rwStateEffector, scObject) # add RW object array to the simulation process. This is required for the UpdateState() method # to be called which logs the RW states scSim.AddModelToTask(simTaskName, rwStateEffector, 2) # create temperature lists for each RW and create objects for each rwTempList = [] tempMeasList = [] for item in range(numRW): rwTempList.append(motorThermal.MotorThermal()) tempMeasList.append(tempMeasurement.TempMeasurement()) # initialize the RW temperature rwTempList[item].ModelTag = "rwThermals" + str(item) rwTempList[item].currentTemperature = 20 # [ºC] rwTempList[item].ambientTemperature = 20 # [ºC] rwTempList[item].efficiency = 0.7 rwTempList[item].ambientThermalResistance = 5 # Air Thermal Resistance rwTempList[item].motorHeatCapacity = 50 # Motor (steel) Heat Capacity # initialize the temperature measurement tempMeasList[item].ModelTag = "tempMeasurementModel" + str(item) tempMeasList[item].senBias = 0.0 # [C] bias amount tempMeasList[item].senNoiseStd = 0.5 # [C] noise standard deviation tempMeasList[item].walkBounds = 0.1 # [C] noise wald bounds tempMeasList[item].stuckValue = 0.0 # [C] if the sensor gets stuck, stuck at 10 degrees C tempMeasList[item].spikeProbability = 0.0 # [-] 30% chance of spiking at each time step tempMeasList[item].spikeAmount = 0.0 # [-] 10x the actual sensed value if the spike happens tempMeasList[item].faultState = tempMeasurement.TEMP_FAULT_NOMINAL # tempMeasList[item].RNGSeed = 123 # Seed number (same seed) tempMeasList[item].RNGSeed = time.time_ns() % (2**32) # Seed number (random for every run) # add RW temperature and measurement object array to the simulation process scSim.AddModelToTask(simTaskName, rwTempList[item], 2) scSim.AddModelToTask(simTaskName, tempMeasList[item], 2) # add the simple Navigation sensor module. This sets the SC attitude, rate, position # velocity navigation message sNavObject = simpleNav.SimpleNav() sNavObject.ModelTag = "SimpleNavigation" scSim.AddModelToTask(simTaskName, sNavObject) # # setup the FSW algorithm tasks # # setup inertial3D guidance module inertial3DObj = inertial3D.inertial3D() inertial3DObj.ModelTag = "inertial3D" scSim.AddModelToTask(simTaskName, inertial3DObj) inertial3DObj.sigma_R0N = [0., 0., 0.] # set the desired inertial orientation # setup the attitude tracking error evaluation module attError = attTrackingError.attTrackingError() attError.ModelTag = "attErrorInertial3D" scSim.AddModelToTask(simTaskName, attError) # setup the MRP Feedback control module mrpControl = mrpFeedback.mrpFeedback() mrpControl.ModelTag = "mrpFeedback" scSim.AddModelToTask(simTaskName, mrpControl) mrpControl.K = 3.5 mrpControl.Ki = -1 # make value negative to turn off integral feedback mrpControl.P = 30.0 mrpControl.integralLimit = 2. / mrpControl.Ki * 0.1 # add module that maps the Lr control torque into the RW motor torques rwMotorTorqueObj = rwMotorTorque.rwMotorTorque() rwMotorTorqueObj.ModelTag = "rwMotorTorque" scSim.AddModelToTask(simTaskName, rwMotorTorqueObj) # Make the RW control all three body axes controlAxes_B = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] rwMotorTorqueObj.controlAxes_B = controlAxes_B # # Setup data logging before the simulation is initialized # numDataPoints = 100 samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) # A message is created that stores an array of the true temperature and temperature measurement. # This is logged here to be plotted later on. rwTempLogs = [] tempMeasLogs = [] for item in range(numRW): rwTempLogs.append(rwTempList[item].temperatureOutMsg.recorder(samplingTime)) scSim.AddModelToTask(simTaskName, rwTempLogs[item]) tempMeasLogs.append(tempMeasList[item].tempOutMsg.recorder(samplingTime)) scSim.AddModelToTask(simTaskName, tempMeasLogs[item]) # # create simulation messages # # create the FSW vehicle configuration message vehicleConfigOut = messaging.VehicleConfigMsgPayload() vehicleConfigOut.ISCPntB_B = I # use the same inertia in the FSW algorithm as in the simulation vcMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut) # set up the FSW RW configuration message. fswSetupRW.clearSetup() for key, rw in rwFactory.rwList.items(): fswSetupRW.create(unitTestSupport.EigenVector3d2np(rw.gsHat_B), rw.Js, 0.2) fswRwParamMsg = fswSetupRW.writeConfigMessage() # # set initial Spacecraft States # # set up the orbit using classical orbit elements oe = orbitalMotion.ClassicElements() oe.a = 10000000.0 # meters oe.e = 0.01 oe.i = 33.3 * macros.D2R oe.Omega = 48.2 * macros.D2R oe.omega = 347.8 * macros.D2R oe.f = 85.3 * macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) scObject.hub.r_CN_NInit = rN # m - r_CN_N scObject.hub.v_CN_NInit = vN # m/s - v_CN_N scObject.hub.sigma_BNInit = [[0.1], [0.2], [-0.3]] # sigma_CN_B scObject.hub.omega_BN_BInit = [[0.001], [-0.01], [0.03]] # rad/s - omega_CN_B # if this scenario is to interface with the BSK Viz, uncomment the following lines viz = vizSupport.enableUnityVisualization(scSim, simTaskName, scObject # , saveFile=fileName , rwEffectorList=rwStateEffector ) # link messages sNavObject.scStateInMsg.subscribeTo(scObject.scStateOutMsg) attError.attNavInMsg.subscribeTo(sNavObject.attOutMsg) attError.attRefInMsg.subscribeTo(inertial3DObj.attRefOutMsg) mrpControl.guidInMsg.subscribeTo(attError.attGuidOutMsg) mrpControl.vehConfigInMsg.subscribeTo(vcMsg) mrpControl.rwParamsInMsg.subscribeTo(fswRwParamMsg) mrpControl.rwSpeedsInMsg.subscribeTo(rwStateEffector.rwSpeedOutMsg) rwMotorTorqueObj.rwParamsInMsg.subscribeTo(fswRwParamMsg) rwMotorTorqueObj.vehControlInMsg.subscribeTo(mrpControl.cmdTorqueOutMsg) rwStateEffector.rwMotorCmdInMsg.subscribeTo(rwMotorTorqueObj.rwMotorTorqueOutMsg) for item in range(numRW): rwTempList[item].rwStateInMsg.subscribeTo(rwStateEffector.rwOutMsgs[item]) tempMeasList[item].tempInMsg.subscribeTo(rwTempList[item].temperatureOutMsg) # # initialize Simulation # scSim.InitializeSimulation() # # configure a simulation stop time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # dataRWTemperature = [] dataTempMeasurement = [] for i in range(numRW): dataRWTemperature.append(rwTempLogs[i].temperature) dataTempMeasurement.append(tempMeasLogs[i].temperature) dataRWTemperature = np.array(dataRWTemperature).T dataTempMeasurement = np.array(dataTempMeasurement).T np.set_printoptions(precision=16) # # plot the results # timeData = rwTempLogs[0].times() * macros.NANO2MIN plt.close("all") # clears out plots from earlier test runs figureList = {} plot_rw_temperature(timeData, dataRWTemperature, numRW) pltName = fileName + "1" figureList[pltName] = plt.figure(1) plot_rw_temp_measurement(timeData, dataTempMeasurement, numRW) pltName = fileName + "2" figureList[pltName] = plt.figure(2) if show_plots: plt.show() # close the plots being saved off to avoid over-writing old and new figures plt.close("all") return figureList
# # This statement below ensures that the unit test scrip can be run as a # stand-along python script # if __name__ == "__main__": run( True # show_plots )