Source code for scenarioTAM

#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

r"""
Overview
--------

Demonstrates how to add a Three-Axis Magnetometer (TAM) sensor to a spacecraft.
This script sets up a 3-DOF spacecraft which is orbiting a planet with a magnetic field.
The orbit setup is similar to that used in :ref:`scenarioBasicOrbit`.

The script is found in the folder ``basilisk/examples`` and executed by using::

      python3 scenarioTAM.py

Simulation Scenario Setup Details
---------------------------------
The simulation layout is shown in the following illustration. A single simulation process is created
which contains the spacecraft object. The spacecraft state and the magnetic field model
(World Magnetic Model (WMM), Centered Dipole Magnetic Field etc.) messages  are connected to
the :ref:`magnetometer` module which outputs the local magnetic field measurements in sensor frame components.

.. image:: /_images/static/test_scenario_magnetometer.svg
   :align: center

When the simulation completes 2 plots are shown for each case. One plot shows the radius in km,
while the second plot shows the magnetic field measurement vector components with respect to the sensor frame.

The dynamics simulation is setup using a :ref:`Spacecraft` module.
The magnetic field module is created using one of the magnetic field models, e.g.
:ref:`scenarioMagneticFieldCenteredDipole`
which requires setting appropriate parameters for the specific planet,
:ref:`scenarioMagneticFieldWMM` which is a model specific to only Earth.

Illustration of Simulation Results
----------------------------------

::

    show_plots = True, orbitCase = 'circular', planetCase = 'Earth', useBias = False, useBounds = False

.. image:: /_images/Scenarios/scenarioTAM1circularEarth.svg
   :align: center

.. image:: /_images/Scenarios/scenarioTAM2circularEarth.svg
   :align: center

::

    show_plots = True, orbitCase = 'elliptical', planetCase = 'Earth', useBias = True, useBounds = False

.. image:: /_images/Scenarios/scenarioTAM1ellipticalEarth.svg
   :align: center

.. image:: /_images/Scenarios/scenarioTAM2ellipticalEarth.svg
   :align: center

::

    show_plots = True, orbitCase = 'circular', planetCase = 'Jupiter', useBias = False, useBounds = True

.. image:: /_images/Scenarios/scenarioTAM1circularJupiter.svg
   :align: center

.. image:: /_images/Scenarios/scenarioTAM2circularJupiter.svg
   :align: center

::

    show_plots = True, orbitCase = 'elliptical', planetCase = 'Jupiter', useBias = False, useBounds = False

.. image:: /_images/Scenarios/scenarioTAM1ellipticalJupiter.svg
   :align: center

.. image:: /_images/Scenarios/scenarioTAM2ellipticalJupiter.svg
   :align: center

"""


#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  Demonstrates how to setup TAM sensor on a rigid spacecraft
# Author:   Demet Cilden-Guler
# Creation Date:  September 20, 2019
#

import os

import matplotlib.pyplot as plt
import numpy as np
from Basilisk import __path__

# The path to the location of Basilisk
# Used to get the location of supporting data.
bskPath = __path__[0]


# import simulation related support
from Basilisk.simulation import magneticFieldCenteredDipole
from Basilisk.simulation import magneticFieldWMM
from Basilisk.simulation import magnetometer

# general support file with common unit test functions
# import general simulation support files
from Basilisk.utilities import (SimulationBaseClass, macros, orbitalMotion,
                                simIncludeGravBody, unitTestSupport)
from Basilisk.utilities import simSetPlanetEnvironment

# import simulation related support
from Basilisk.simulation import spacecraft

#attempt to import vizard
from Basilisk.utilities import vizSupport
fileName = os.path.basename(os.path.splitext(__file__)[0])

[docs] def run(show_plots, orbitCase, planetCase, useBias, useBounds): """ The scenarios can be run with the followings setups parameters: Args: show_plots (bool): Determines if the script should display plots orbitCase (str): Specify the type of orbit to be simulated {'elliptical', 'circular'} planetCase (str): Specify about which the spacecraft is orbiting {'Earth', 'Jupiter'} useBias (bool): Flag to use a sensor bias useBounds (bool): Flag to use TAM sensor bounds """ # Create simulation variable names simTaskName = "simTask" simProcessName = "simProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() # # create the simulation process # dynProcess = scSim.CreateNewProcess(simProcessName) # create the dynamics task and specify the integration update time simulationTimeStep = macros.sec2nano(10.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # # setup the simulation tasks/objects # # initialize spacecraft object and set properties scObject = spacecraft.Spacecraft() scObject.ModelTag = "bsk-Sat" # add spacecraft object to the simulation process scSim.AddModelToTask(simTaskName, scObject) # setup Gravity Body gravFactory = simIncludeGravBody.gravBodyFactory() if planetCase == 'Jupiter': planet = gravFactory.createJupiter() planet.isCentralBody = True # ensure this is the central gravitational body elif planetCase == 'Earth': planet = gravFactory.createEarth() planet.isCentralBody = True # ensure this is the central gravitational body mu = planet.mu req = planet.radEquator # attach gravity model to spacecraft gravFactory.addBodiesTo(scObject) if planetCase == 'Jupiter': magModule = magneticFieldCenteredDipole.MagneticFieldCenteredDipole() # default is Earth centered dipole module magModule.ModelTag = "CenteredDipole" # The following command is a support function that sets up the centered dipole parameters. # These parameters can also be setup manually simSetPlanetEnvironment.centeredDipoleMagField(magModule, 'jupiter') elif planetCase == 'Earth': magModule = magneticFieldWMM.MagneticFieldWMM() magModule.ModelTag = "WMM" magModule.dataPath = bskPath + '/supportData/MagneticField/' # set epoch date/time message epochMsg = unitTestSupport.timeStringToGregorianUTCMsg('2019 June 27, 10:23:0.0 (UTC)') magModule.epochInMsg.subscribeTo(epochMsg) if orbitCase == 'elliptical': magModule.envMinReach = 10000 * 1000. magModule.envMaxReach = 20000 * 1000. # add spacecraft to the magnetic field module so it can read the sc position messages magModule.addSpacecraftToModel(scObject.scStateOutMsg) # this command can be repeated if multiple # add the magnetic field module to the simulation task stack scSim.AddModelToTask(simTaskName, magModule) # create the minimal TAM module TAM = magnetometer.Magnetometer() TAM.ModelTag = "TAM_sensor" # specify the optional TAM variables TAM.scaleFactor = 1.0 TAM.senNoiseStd = [100e-9, 100e-9, 100e-9] if useBias: TAM.senBias = [0, 0, -1e-6] # Tesla if useBounds: TAM.maxOutput = 3.5e-4 # Tesla TAM.minOutput = -3.5e-4 # Tesla TAM.stateInMsg.subscribeTo(scObject.scStateOutMsg) scSim.AddModelToTask(simTaskName, TAM) # # setup orbit and simulation time # # setup the orbit using classical orbit elements oe = orbitalMotion.ClassicElements() rPeriapses = req*1.1 # meters if orbitCase == 'circular': oe.a = rPeriapses oe.e = 0.0000 elif orbitCase == 'elliptical': rApoapses = req*3.5 oe.a = (rPeriapses + rApoapses) / 2.0 oe.e = 1.0 - rPeriapses / oe.a else: print("Unsupported orbit type " + orbitCase + " selected") exit(1) oe.i = 85.0 * macros.D2R oe.Omega = 48.2 * macros.D2R oe.omega = 347.8 * macros.D2R oe.f = 85.3 * macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) # next lines stores consistent initial orbit elements # with circular or equatorial orbit, some angles are arbitrary oe = orbitalMotion.rv2elem(mu, rN, vN) # # initialize Spacecraft States with the initialization variables # scObject.hub.r_CN_NInit = rN # m - r_BN_N scObject.hub.v_CN_NInit = vN # m/s - v_BN_N # set the simulation time n = np.sqrt(mu / oe.a / oe.a / oe.a) P = 2. * np.pi / n simulationTime = macros.sec2nano(1. * P) # # Setup data logging before the simulation is initialized # numDataPoints = 100 samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) magLog = magModule.envOutMsgs[0].recorder(samplingTime) tamLog = TAM.tamDataOutMsg.recorder(samplingTime) dataLog = scObject.scStateOutMsg.recorder(samplingTime) scSim.AddModelToTask(simTaskName, magLog) scSim.AddModelToTask(simTaskName, tamLog) scSim.AddModelToTask(simTaskName, dataLog) TAM.magInMsg.subscribeTo(magModule.envOutMsgs[0]) # if this scenario is to interface with the BSK Viz, uncomment the following line vizSupport.enableUnityVisualization(scSim, simTaskName, scObject # , saveFile=fileName ) scSim.InitializeSimulation() # # configure a simulation stop time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # magData = magLog.magField_N tamData = tamLog.tam_S posData = dataLog.r_BN_N np.set_printoptions(precision=16) # # plot the results # # draw the inertial position vector components plt.close("all") # clears out plots from earlier test runs plt.figure(1) fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='sci') ax.get_yaxis().set_major_formatter(plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x)))) rData = [] timeAxis = dataLog.times() for idx in range(len(posData)): rMag = np.linalg.norm(posData[idx]) rData.append(rMag / 1000.) plt.plot(timeAxis * macros.NANO2SEC / P, rData, color='#aa0000') if orbitCase == 'elliptical': plt.plot(timeAxis * macros.NANO2SEC / P, [magModule.envMinReach / 1000.] * len(rData), color='#007700', dashes=[5, 5, 5, 5]) plt.plot(timeAxis * macros.NANO2SEC / P, [magModule.envMaxReach / 1000.] * len(rData), color='#007700', dashes=[5, 5, 5, 5]) plt.xlabel('Time [orbits]') plt.ylabel('Radius [km]') plt.ylim(min(rData) * 0.9, max(rData) * 1.1) figureList = {} pltName = fileName + "1" + orbitCase + planetCase figureList[pltName] = plt.figure(1) plt.figure(2) fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='sci') ax.get_yaxis().set_major_formatter(plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x)))) for idx in range(3): plt.plot(timeAxis * macros.NANO2SEC / P, tamData[:, idx] * 1e9, color=unitTestSupport.getLineColor(idx, 3), label=r'$TAM_{' + str(idx) + '}$') plt.legend(loc='lower right') plt.xlabel('Time [orbits]') plt.ylabel('Magnetic Field [nT] ') pltName = fileName + "2" + orbitCase + planetCase figureList[pltName] = plt.figure(2) if show_plots: plt.show() # close the plots being saved off to avoid over-writing old and new figures plt.close("all") return magData, tamData, figureList, simulationTime
# # This statement below ensures that the unit test scrip can be run as a # stand-along python script # if __name__ == "__main__": run( True, # show_plots (True, False) 'elliptical', # orbit Case (circular, elliptical) 'Jupiter', # planet Case (Earth, Jupiter) False, # useBias False # useBounds )