Source code for scenarioAerocapture

#
#  ISC License
#
#  Copyright (c) 2022, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

r"""
Overview
--------

Demonstrates a spacecraft performing aerocapture.  :ref:`tabularAtmosphere` is used
to read in a table of atmospheric density value for the planet.  A cannonball
drag effector (:ref:`dragDynamicEffector`) is used to simulate the atmospheric drag force.

The script is found in the folder ``basilisk/examples`` and executed by using::

      python3 scenarioAerocapture.py


Illustration of Simulation Results
----------------------------------
For the Earth aerocapture the following figures illustrate the simulation results.
The spacecraft first dips into the atmosphere and looses orbital energy to the point
of being capture by the planet.  The spacecraft has enough velocity to escape the
planet atmosphere at the end of the simulation time.  This is also illustrated by
the velocity versus altitude plot.  The density plot illustrates the result of the
tabular atmosphere model.

::

    show_plots = True, planetCase = `Earth`

.. image:: /_images/Scenarios/scenarioAerocapture5Earth.svg
   :align: center

.. image:: /_images/Scenarios/scenarioAerocapture4Earth.svg
   :align: center

.. image:: /_images/Scenarios/scenarioAerocapture3Earth.svg
   :align: center

.. image:: /_images/Scenarios/scenarioAerocapture2Earth.svg
   :align: center

For the Mars aerocapture scenario the orbit is adjusted to be suitable for this planet scenario.
Here too the spacecraft enters the atmosphere to burn off orbital energy and become
captured by the planet.

::

    show_plots = True, planetCase = `Mars`

.. image:: /_images/Scenarios/scenarioAerocapture5Mars.svg
   :align: center

.. image:: /_images/Scenarios/scenarioAerocapture4Mars.svg
   :align: center

.. image:: /_images/Scenarios/scenarioAerocapture3Mars.svg
   :align: center

.. image:: /_images/Scenarios/scenarioAerocapture2Mars.svg
   :align: center


"""

import os

import matplotlib.pyplot as plt
import numpy as np
# The path to the location of Basilisk
# Used to get the location of supporting data.
from Basilisk import __path__
from Basilisk.simulation import dragDynamicEffector
# import simulation related support
from Basilisk.simulation import spacecraft
from Basilisk.simulation import tabularAtmosphere, simpleNav
# import general simulation support files
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import simIncludeGravBody
from Basilisk.utilities import unitTestSupport
from Basilisk.utilities import vizSupport
from Basilisk.utilities.readAtmTable import readAtmTable

#
# Basilisk Scenario Script and Integrated Test
#
# Purpose:  Aerocapture with cannonball drag and tabular atmosphere modules
# Author:   Mikaela Felix and Hanspeter Schaub
# Creation Date:  May 17, 2022
#
# filename = inspect.getframeinfo(inspect.currentframe()).filename
# path = os.path.dirname(os.path.abspath(filename))
bskPath = __path__[0]
fileName = os.path.basename(os.path.splitext(__file__)[0])


[docs] def sph2rv(xxsph): """ NOTE: this function assumes inertial and planet-fixed frames are aligned at this time """ r = xxsph[0] lon = xxsph[1] lat = xxsph[2] u = xxsph[3] gam = xxsph[4] hda = xxsph[5] NI = np.eye(3) IE = np.array([[np.cos(lat) * np.cos(lon), -np.sin(lon), -np.sin(lat) * np.cos(lon)], [np.cos(lat) * np.sin(lon), np.cos(lon), -np.sin(lat) * np.sin(lon)], [np.sin(lat), 0, np.cos(lat)]]) ES = np.array([[np.cos(gam), 0, np.sin(gam)], [-np.sin(gam) * np.sin(hda), np.cos(hda), np.cos(gam) * np.sin(hda)], [-np.sin(gam) * np.cos(hda), -np.sin(hda), np.cos(gam) * np.cos(hda)]]) e1_E = np.array([1,0,0]) rvec_N = (r * NI @ IE) @ e1_E s3_S = np.array([0,0,1]) uvec_N = u * ( NI @ IE @ ES) @ s3_S return rvec_N, uvec_N
[docs] def run(show_plots, planetCase): """ The scenarios can be run with the followings setups parameters: Args: show_plots (bool): Determines if the script should display plots planetCase (string): Specify if a `Mars` or `Earth` arrival is simulated """ # Create simulation variable names simTaskName = "simTask" simProcessName = "simProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() # # create the simulation process # dynProcess = scSim.CreateNewProcess(simProcessName) # create the dynamics task and specify the integration update time simulationTimeStep = macros.sec2nano(10.) dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) # Construct algorithm and associated C++ container # change module to tabAtmo tabAtmo = tabularAtmosphere.TabularAtmosphere() # update with current values tabAtmo.ModelTag = "tabularAtmosphere" # update python name of test module atmoTaskName = "atmosphere" # define constants & load data if planetCase == 'Earth': r_eq = 6378136.6 dataFileName = bskPath + '/supportData/AtmosphereData/EarthGRAMNominal.txt' altList, rhoList, tempList = readAtmTable(dataFileName, 'EarthGRAM') else: r_eq = 3397.2 * 1000 dataFileName = bskPath + '/supportData/AtmosphereData/MarsGRAMNominal.txt' altList, rhoList, tempList = readAtmTable(dataFileName, 'MarsGRAM') # assign constants & ref. data to module tabAtmo.planetRadius = r_eq tabAtmo.altList = tabularAtmosphere.DoubleVector(altList) tabAtmo.rhoList = tabularAtmosphere.DoubleVector(rhoList) tabAtmo.tempList = tabularAtmosphere.DoubleVector(tempList) # Drag Effector projArea = 10.0 # Set drag area in m^2 dragCoeff = 2.2 # Set drag ceofficient m_sc = 2530.0 # kg dragEffector = dragDynamicEffector.DragDynamicEffector() dragEffector.ModelTag = "DragEff" dragEffectorTaskName = "drag" dragEffector.coreParams.projectedArea = projArea dragEffector.coreParams.dragCoeff = dragCoeff dragEffector.coreParams.comOffset = [1., 0., 0.] dynProcess.addTask(scSim.CreateNewTask(atmoTaskName, simulationTimeStep)) dynProcess.addTask(scSim.CreateNewTask(dragEffectorTaskName, simulationTimeStep)) scSim.AddModelToTask(atmoTaskName, tabAtmo) # Add test module to runtime call list scSim.AddModelToTask(simTaskName, tabAtmo) # # setup the simulation tasks/objects # # initialize spacecraft object and set properties scObject = spacecraft.Spacecraft() scObject.ModelTag = "spacecraftBody" scObject.hub.mHub = m_sc tabAtmo.addSpacecraftToModel(scObject.scStateOutMsg) simpleNavObj = simpleNav.SimpleNav() scSim.AddModelToTask(simTaskName, simpleNavObj) simpleNavObj.scStateInMsg.subscribeTo(scObject.scStateOutMsg) scObject.addDynamicEffector(dragEffector) # add spacecraft object to the simulation process scSim.AddModelToTask(simTaskName, scObject) scSim.AddModelToTask(dragEffectorTaskName, dragEffector) # clear prior gravitational body and SPICE setup definitions dragEffector.atmoDensInMsg.subscribeTo(tabAtmo.envOutMsgs[0]) # setup Gravity Body gravFactory = simIncludeGravBody.gravBodyFactory() planet = gravFactory.createBody(planetCase) planet.isCentralBody = True # ensure this is the central gravitational body mu = planet.mu # attach gravity model to spacecraft gravFactory.addBodiesTo(scObject) if planetCase == 'Earth': r = 6503 * 1000 u = 11.2 * 1000 gam = -5.15 * macros.D2R else: r = (3397.2 + 125.) * 1000 u = 6 * 1000 gam = -10 * macros.D2R lon = 0 lat = 0 hda = np.pi/2 xxsph = [r,lon,lat,u,gam,hda] rN, vN = sph2rv(xxsph) scObject.hub.r_CN_NInit = rN # m - r_CN_N scObject.hub.v_CN_NInit = vN # m - v_CN_N # set the simulation time if planetCase == 'Earth': simulationTime = macros.sec2nano(300) else: simulationTime = macros.sec2nano(400) # # Setup data logging before the simulation is initialized # dataLog = scObject.scStateOutMsg.recorder() dataNewAtmoLog = tabAtmo.envOutMsgs[0].recorder() scSim.AddModelToTask(simTaskName, dataLog) scSim.AddModelToTask(simTaskName, dataNewAtmoLog) # # initialize Spacecraft States with initialization variables # scObject.hub.r_CN_NInit = rN # m - r_CN_N scObject.hub.v_CN_NInit = vN # m - v_CN_N # if this scenario is to interface with the BSK Viz, uncomment the following line vizSupport.enableUnityVisualization(scSim, simTaskName, scObject # , saveFile=fileName ) # # initialize Simulation # scSim.InitializeSimulation() # # configure a simulation stop time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # posData = dataLog.r_BN_N velData = dataLog.v_BN_N densData = dataNewAtmoLog.neutralDensity np.set_printoptions(precision=16) figureList = {} plt.close("all") # clears out plots from earlier test runs # draw the inertial position vector components plt.figure(1) fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='plain') for idx in range(0,3): plt.plot(dataLog.times()*macros.NANO2MIN, posData[:, idx]/1000., color=unitTestSupport.getLineColor(idx,3), label='$r_{BN,'+str(idx)+'}$') plt.legend(loc='lower right') plt.xlabel('Time [min]') plt.ylabel('Inertial Position [km]') plt.figure(2) fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='plain') smaData = [] engData = [] for idx in range(0, len(posData)): oeData = orbitalMotion.rv2elem(mu, posData[idx, 0:3], velData[idx, 0:3]) smaData.append(oeData.a/1000.) engData.append(-mu/(2*oeData.a)/1e6) # km^2/s^2 plt.plot(dataLog.times()*macros.NANO2MIN, engData , color='#aa0000' ) plt.xlabel('Time [min]') plt.ylabel('Energy [km^2/s^2]') plt.grid() pltName = fileName + "2" + planetCase figureList[pltName] = plt.figure(2) r = np.linalg.norm(posData, axis=1) v = np.linalg.norm(velData, axis=1) plt.figure(3) fig = plt.gcf() ax = fig.gca() ax.ticklabel_format(useOffset=False, style='sci') plt.plot(dataNewAtmoLog.times()*macros.NANO2MIN, densData) plt.xlabel('Time [min]') plt.ylabel('Density in kg/m^3') pltName = fileName + "3" + planetCase figureList[pltName] = plt.figure(3) plt.figure(4) fig = plt.gcf() ax = fig.gca() plt.plot(v/1e3, (r-r_eq)/1e3) plt.xlabel('velocity [km/s]') plt.ylabel('altitude [km]') plt.grid() pltName = fileName + "4" + planetCase figureList[pltName] = plt.figure(4) plt.figure(5) fig = plt.gcf() ax = fig.gca() plt.plot(dataLog.times()*macros.NANO2MIN, (r-r_eq)/1e3) plt.xlabel('time [min]') plt.ylabel('altitude [km]') plt.grid() pltName = fileName + "5" + planetCase figureList[pltName] = plt.figure(5) if show_plots: plt.show() plt.close("all") return figureList
# close the plots being saved off to avoid over-writing old and new figures if __name__ == '__main__': run(True, 'Mars') # planet arrival case, can be Earth or Mars