#
# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import matplotlib.pyplot as plt
import numpy as np
from Basilisk.utilities import RigidBodyKinematics
from Basilisk.utilities import macros as mc
from Basilisk.utilities import orbitalMotion
from Basilisk.utilities import unitTestSupport
# --------------------------------- COMPONENTS & SUBPLOT HANDLING ----------------------------------------------- #
color_x = 'dodgerblue'
color_y = 'salmon'
color_z = 'lightgreen'
m2km = 1.0 / 1000.0
def show_all_plots():
plt.show()
def clear_all_plots():
plt.close("all")
def save_all_plots(fileName, figureNames):
figureList = {}
numFigures = len(figureNames)
for i in range(0, numFigures):
pltName = fileName + "_" + figureNames[i]
figureList[pltName] = plt.figure(i+1)
return figureList
def plot3components(timeAxis, vec, id=None):
plt.figure(id)
time = timeAxis * mc.NANO2MIN
plt.xlabel('Time, min')
plt.plot(time, vec[:, 0], color_x)
plt.plot(time, vec[:, 1], color_y)
plt.plot(time, vec[:, 2], color_z)
def plot_sigma(timeAxis, sigma, id=None):
plot3components(timeAxis, sigma, id)
plt.legend([r'$\sigma_1$', r'$\sigma_2$', r'$\sigma_3$'])
plt.ylabel('MRP')
def plot_omega(timeAxis, omega, id=None):
plot3components(timeAxis, omega, id)
plt.ylabel('Angular Rate, rad/s')
plt.legend([r'$\omega_1$', r'$\omega_2$', r'$\omega_3$'])
def subplot_sigma(subplot, timeAxis, sigma, id=None):
plot3components(timeAxis, sigma, id)
plt.legend([r'$\sigma_1$', r'$\sigma_2$', r'$\sigma_3$'])
plt.ylabel('MRP')
def subplot_omega(subplot, timeAxis, omega, id=None):
plot3components(timeAxis, omega, id)
plt.ylabel('Angular Rate, rad/s')
plt.legend([r'$\omega_1$', r'$\omega_2$', r'$\omega_3$'])
# ------------------------------------- MAIN PLOT HANDLING ------------------------------------------------------ #
# def plot_bodyTorque(Lb):
# plt.figure()
# plot3components(Lb)
# plt.title('Body Torque $L_b$')
# plt.ylabel('Body Torque, $N \cdot m$')
# plt.legend(['$L_{b,1}$', '$L_{b,2}$', '$L_{b,3}$'])
def plot_controlTorque(timeAxis, Lr, id=None):
plot3components(timeAxis, Lr, id)
plt.ylabel(r'Control Torque, $N \cdot m$')
plt.legend(['$L_{r,1}$', '$L_{r,2}$', '$L_{r,3}$'])
plt.title('Control Torque $L_r$')
return
def plot_trackingError(timeAxis, sigma_BR, omega_BR_B, id=None):
# plt.figure(id)
plt.subplot(211)
plot_sigma(timeAxis, sigma_BR, id)
plt.title(r'Att Error: $\sigma_{BR}$')
plt.subplot(212)
#plt.figure(id)
plot_omega(timeAxis, omega_BR_B, id)
plt.title(r'Rate Error: $^B{\omega_{BR}}$')
return
def plot_attitudeGuidance(timeAxis, sigma_RN, omega_RN_N, id=None):
plot_sigma(timeAxis, sigma_RN, id)
plt.ylim([-1.0, 1.0])
plt.title(r'Ref Att: $\sigma_{RN}$')
plot_omega(timeAxis, omega_RN_N, id)
plt.title(r'Ref Rate: $^N{\omega_{RN}}$')
return
def plot_rotationalNav(timeAxis, sigma_BN, omega_BN_B, id=None):
plt.figure()
plot_sigma(timeAxis, sigma_BN, id)
plt.title(r'Sc Att: $\sigma_{BN}$')
plot_omega(timeAxis, omega_BN_B, id)
plt.title(r'Sc Rate: $^B{\omega_{BN}}$')
return
def plot_shadow_fraction(timeAxis, shadow_factor, id=None):
plt.figure(id)
plt.plot(timeAxis, shadow_factor)
plt.xlabel('Time min')
plt.ylabel('Shadow Fraction')
return
def plot_sun_point(timeAxis, sunPoint, id=None):
plot3components(timeAxis, sunPoint, id)
plt.xlabel('Time')
plt.ylabel('Sun Point Vec')
return
def plot_orbit(r_BN, id=None):
plt.figure(id)
plt.xlabel('$R_x$, km')
plt.ylabel('$R_y$, km')
plt.plot(r_BN[:, 0] * m2km, r_BN[:, 1] * m2km, color_x)
plt.scatter(0, 0, c=color_x)
plt.title('Spacecraft Orbit')
return
def plot_attitude_error(timeLineSet, dataSigmaBR, id=None):
plt.figure(id)
fig = plt.gcf()
ax = fig.gca()
vectorData = unitTestSupport.pullVectorSetFromData(dataSigmaBR)
sNorm = np.array([np.linalg.norm(v) for v in vectorData])
plt.plot(timeLineSet, sNorm,
color=unitTestSupport.getLineColor(1, 3),
)
plt.xlabel('Time [min]')
plt.ylabel(r'Attitude Error Norm $|\sigma_{B/R}|$')
ax.set_yscale('log')
def plot_control_torque(timeLineSet, dataLr, id=None, livePlot=False):
plt.figure(id)
for idx in range(3):
plt.plot(timeLineSet, dataLr[:, idx],
color=unitTestSupport.getLineColor(idx, 3),
label='$L_{r,' + str(idx) + '}$')
if not livePlot:
plt.legend(loc='lower right')
plt.xlabel('Time [min]')
plt.ylabel('Control Torque $L_r$ [Nm]')
def plot_rate_error(timeLineSet, dataOmegaBR, id=None, livePlot=False):
plt.figure(id)
for idx in range(3):
plt.plot(timeLineSet, dataOmegaBR[:, idx],
color=unitTestSupport.getLineColor(idx, 3),
label=r'$\omega_{BR,' + str(idx) + '}$')
if not livePlot:
plt.legend(loc='lower right')
plt.xlabel('Time [min]')
plt.ylabel('Rate Tracking Error [rad/s] ')
return
def plot_orientation(timeLineSet, vectorPosData, vectorVelData, vectorMRPData, id=None, livePlot=False):
data = np.empty([len(vectorPosData), 3])
for idx in range(0, len(vectorPosData)):
ir = vectorPosData[idx] / np.linalg.norm(vectorPosData[idx])
hv = np.cross(vectorPosData[idx], vectorVelData[idx])
ih = hv / np.linalg.norm(hv)
itheta = np.cross(ih, ir)
dcmBN = RigidBodyKinematics.MRP2C(vectorMRPData[idx])
data[idx] = [np.dot(ir, dcmBN[0]), np.dot(itheta, dcmBN[1]), np.dot(ih, dcmBN[2])]
plt.figure(id)
labelStrings = (r'$\hat\imath_r\cdot \hat b_1$'
, r'${\hat\imath}_{\theta}\cdot \hat b_2$'
, r'$\hat\imath_h\cdot \hat b_3$')
for idx in range(0, 3):
plt.plot(timeLineSet, data[:, idx],
color=unitTestSupport.getLineColor(idx, 3),
label=labelStrings[idx])
if not livePlot:
plt.legend(loc='lower right')
plt.xlabel('Time [min]')
plt.ylabel('Orientation Illustration')
def plot_rw_cmd_torque(timeData, dataUsReq, numRW, id=None, livePlot=False):
plt.figure(id)
for idx in range(3):
plt.plot(timeData, dataUsReq[:, idx],
'--',
color=unitTestSupport.getLineColor(idx, numRW),
label=r'$\hat u_{s,' + str(idx) + '}$')
if not livePlot:
plt.legend(loc='lower right')
plt.xlabel('Time [min]')
plt.ylabel('RW Motor Torque (Nm)')
[docs]
def plot_rw_cmd_actual_torque(timeData, dataUsReq, dataRW, numRW, id=None, livePlot=False):
"""compare commanded and actual RW motor torques"""
plt.figure(id)
for idx in range(numRW):
plt.plot(timeData, dataUsReq[:, idx],
'--',
color=unitTestSupport.getLineColor(idx, numRW),
label=r'$\hat u_{s,' + str(idx) + '}$')
plt.plot(timeData, dataRW[idx],
color=unitTestSupport.getLineColor(idx, numRW),
label='$u_{s,' + str(idx) + '}$')
plt.legend(loc='lower right')
plt.xlabel('Time [min]')
plt.ylabel('RW Motor Torque (Nm)')
def plot_rw_speeds(timeData, dataOmegaRW, numRW, id=None, livePlot=False):
plt.figure(id)
for idx in range(numRW):
plt.plot(timeData, dataOmegaRW[:, idx] / mc.RPM,
color=unitTestSupport.getLineColor(idx, numRW),
label=r'$\Omega_{' + str(idx) + '}$')
if not livePlot:
plt.legend(loc='upper right')
plt.xlabel('Time [min]')
plt.ylabel('RW Speed (RPM) ')
def plot_rw_friction(timeData, dataFrictionRW, numRW, dataFaultLog=[], id=None, livePlot=False):
plt.figure(id)
for idx in range(numRW):
plt.plot(timeData, dataFrictionRW[idx],
color=unitTestSupport.getLineColor(idx, numRW),
label=r'$RW_{' + str(idx+1) + '} Friction$')
if dataFaultLog:
# fourth column of dataFaultLog is the fault times
plt.scatter([row[3] for row in dataFaultLog], np.zeros(len(dataFaultLog)), marker="x", color=(1,0,0),
label='Faults')
if not livePlot:
plt.legend(loc='upper right')
plt.xlabel('Time [min]')
plt.ylabel('RW Static Friction ')
def plot_planet(oe, planet):
b = oe.a * np.sqrt(1 - oe.e * oe.e)
plt.figure(figsize=np.array((1.0, b / oe.a)) * 4.75, dpi=100)
plt.axis(np.array([-oe.a, oe.a, -b, b]) / 1000 * 1.75)
# draw the planet
fig = plt.gcf()
ax = fig.gca()
planetColor = '#008800'
planetRadius = planet.radEquator / 1000
ax.add_artist(plt.Circle((0, 0), planetRadius, color=planetColor))
plt.xlabel('$i_e$ Cord. [km]')
plt.ylabel('$i_p$ Cord. [km]')
plt.grid()
def plot_peri_and_orbit(oe, mu, r_BN_N, v_BN_N, id=None):
# draw the actual orbit
rData = []
fData = []
p = oe.a * (1 - oe.e * oe.e)
for idx in range(0, len(r_BN_N)):
oeData = orbitalMotion.rv2elem(mu, r_BN_N[idx], v_BN_N[idx])
rData.append(oeData.rmag)
fData.append(oeData.f + oeData.omega - oe.omega)
plt.figure(id)
plt.plot(rData * np.cos(fData) / 1000, rData * np.sin(fData) / 1000, color='#aa0000', linewidth=3.0)
# draw the full osculating orbit from the initial conditions
fData = np.linspace(0, 2 * np.pi, 100)
rData = []
for idx in range(0, len(fData)):
rData.append(p / (1 + oe.e * np.cos(fData[idx])))
plt.plot(rData * np.cos(fData) / 1000, rData * np.sin(fData) / 1000, '--', color='#555555')
def plot_rel_orbit(timeData, r_chief, r_deputy, id=None, livePlot=False):
plt.figure(id)
x = np.array(r_chief[:, 0]) - np.array(r_deputy[:, 0])
y = np.array(r_chief[:, 1]) - np.array(r_deputy[:, 1])
z = np.array(r_chief[:, 2]) - np.array(r_deputy[:, 2])
plt.plot(timeData, x, label="x")
plt.plot(timeData, y, label="y")
plt.plot(timeData, z, label="z")
if not livePlot:
plt.legend()
plt.grid()