# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#   Unit Test Script
#   Module Name:        thrForceMapping
#   Author:             Hanspeter Schaub
#   Creation Date:      July 4, 2016
#
import inspect
import os
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
import pytest
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import thrForceMapping
from Basilisk.utilities import macros
from Basilisk.utilities import fswSetupThrusters
from Basilisk.architecture import messaging
import numpy as np
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]
@pytest.mark.parametrize("useDVThruster", [True, False])
@pytest.mark.parametrize(["useCOMOffset","dropThruster", "use2ndLoop"],[
                         (False, 0, False),
                         (False, 1, True),
                         (False, 2, True), # Any time we drop a thruster we should recompute the solution
                         (True, 0, False)]) # We don't handle the case where there is a dropped thruster and and COM offset--see performance analysis.
@pytest.mark.parametrize("asymmetricDrop", [False])
@pytest.mark.parametrize("numControlAxis", [1, 2, 3])
@pytest.mark.parametrize("saturateThrusters", [0,1,2])
@pytest.mark.parametrize("misconfigThruster", [False])
# update "module" in this function name to reflect the module name
def test_module(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster, use2ndLoop):
    """Module Unit Test"""
    # each test method requires a single assert method to be called
    [testResults, testMessage] = thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop,
                                                   numControlAxis, saturateThrusters, misconfigThruster, use2ndLoop)
    assert testResults < 1, testMessage 
def thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis,
                      saturateThrusters, misconfigThruster,use2ndLoop):
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    module = thrForceMapping.thrForceMapping()
    module.ModelTag = "thrForceMapping"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, module)
    # Initialize the test module configuration data
    module.use2ndLoop = use2ndLoop
    # write vehicle configuration message
    vehicleConfigOut = messaging.VehicleConfigMsgPayload()
    if useCOMOffset == 1:
        CoM_B = [0.03,0.001,0.02]
    else:
        CoM_B = [0,0,0]
    vehicleConfigOut.CoM_B = CoM_B
    vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut)
    # Create input message and size it because the regular creator of that message
    # is not part of the test.
    inputMessageData = messaging.CmdTorqueBodyMsgPayload()  # Create a structure for the input message
    requestedTorque = [1.0, -0.5, 0.7]             # Set up a list as a 3-vector
    if saturateThrusters>0:        # default angErrThresh is 0, thus this should trigger scaling
        requestedTorque = [10.0, -5.0, 7.0]
    if saturateThrusters==2:        # angle is set and small enough to trigger scaling
        module.angErrThresh = 10.0*macros.D2R
    if saturateThrusters==3:        # angle is too large enough to trigger scaling
        module.angErrThresh = 40.0*macros.D2R
    inputMessageData.torqueRequestBody = requestedTorque   # write torque request to input message
    cmdTorqueInMsg = messaging.CmdTorqueBodyMsg().write(inputMessageData)
    module.epsilon = 0.0005
    fswSetupThrusters.clearSetup()
    MAX_EFF_CNT = messaging.MAX_EFF_CNT
    rcsLocationData = np.zeros((MAX_EFF_CNT, 3))
    rcsDirectionData = np.zeros((MAX_EFF_CNT, 3))
    controlAxes_B = np.array([
        [1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]
    ])
    controlAxes_B = controlAxes_B[0:numControlAxis]
    if len(controlAxes_B) == 0:
        controlAxes_B = np.array([[]])
    controlAxes_B = np.reshape(controlAxes_B, (1, 3 * numControlAxis))
    module.controlAxes_B = controlAxes_B[0].tolist()
    if useDVThruster:
        # DV thruster setup
        module.thrForceSign = -1
        numThrusters = 6
        rcsLocationData[0:6] = [ \
            [0, 0.413, -0.1671],
            [0, -0.413, -0.1671],
            [0.35766849176297305, 0.20650000000000013, -0.1671],
            [0.3576684917629732, -0.20649999999999988, -0.1671],
            [-0.35766849176297333, 0.20649999999999968, -0.1671],
            [-0.35766849176297305, -0.20650000000000018, -0.1671] \
            ]
        rcsDirectionData[0:6] = [ \
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0] \
            ]
    else:
        # RCS thruster setup
        module.thrForceSign = +1
        numThrusters = 8
        rcsLocationData[0:8] = [ \
                [-0.86360, -0.82550, 1.79070],
                [-0.82550, -0.86360, 1.79070],
                [0.82550, 0.86360, 1.79070],
                [0.86360, 0.82550, 1.79070],
                [-0.86360, -0.82550, -1.79070],
                [-0.82550, -0.86360, -1.79070],
                [0.82550, 0.86360, -1.79070],
                [0.86360, 0.82550, -1.79070] \
                ]
        rcsDirectionData[0:8] = [ \
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, -1.0, 0.0],
            [-1.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, -1.0, 0.0],
            [-1.0, 0.0, 0.0] \
            ]
    if dropThruster > 0:
        if (dropThruster % 2==0) and asymmetricDrop: # Drop thrusters that don't share the same torque direction
            removedThrusters = 0
            for i in range(0, numThrusters, 2):
                rcsLocationData[i] = [0.0, 0.0, 0.0]
                rcsDirectionData[i] = [0.0, 0.0, 0.0]
                removedThrusters += 1
            if removedThrusters < dropThruster:
                rcsLocationData[1] = [0.0, 0.0, 0.0]
                removedThrusters += 1
        else:
            for i in range(dropThruster):
                rcsLocationData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0]
                rcsDirectionData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0]
        indices = []
        for i in range(numThrusters):
            if np.linalg.norm(rcsLocationData[i]) == 0:
                indices = np.append(indices, i)
        offset = 0
        for i in indices:
            idx = (int) (i - offset)
            rcsLocationData = np.delete(rcsLocationData, idx, axis=0)
            rcsDirectionData = np.delete(rcsDirectionData, idx, axis=0)
            rcsLocationData = np.append(rcsLocationData,[[0.0, 0.0, 0.0]], axis=0)
            rcsDirectionData = np.append(rcsDirectionData, [[0.0, 0.0, 0.0]], axis=0)
            offset = offset + 1
        numThrusters = numThrusters - dropThruster
    maxThrust = 0.95
    if useDVThruster:
        maxThrust = 10.0
    for i in range(numThrusters):
        if misconfigThruster and i == 0:
            maxThrustConfig = 0.0
        else:
            maxThrustConfig = maxThrust
        fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], maxThrustConfig)
    thrConfigInMsg = fswSetupThrusters.writeConfigMessage()
    # Setup logging on the test module output message so that we get all the writes to it
    dataLog = module.thrForceCmdOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, dataLog)
    # connect messages
    module.cmdTorqueInMsg.subscribeTo(cmdTorqueInMsg)
    module.thrConfigInMsg.subscribeTo(thrConfigInMsg)
    module.vehConfigInMsg.subscribeTo(vcInMsg)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.5))        # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    # This pulls the actual data log from the simulation run.
    moduleOutput = dataLog.thrForce
    if misconfigThruster:
        return [testFailCount, ''.join(testMessages)] # We don't handle cases where a thruster is configured incorrectly.
    if useDVThruster and numControlAxis == 3:
        return [testFailCount, ''.join(testMessages)] # 3 control axes doesn't work for dv thrusters (only two axes controllable)
    results = thrForceMapping.Results_thrForceMapping(requestedTorque, module.controlAxes_B,
                                         vehicleConfigOut.CoM_B, rcsLocationData,
                                         rcsDirectionData, module.thrForceSign,
                                         module.thrForcMag, module.angErrThresh,
                                         numThrusters, module.epsilon, use2ndLoop)
    F, DNew = results.results_thrForceMapping()
    trueVector = np.zeros((2, MAX_EFF_CNT))
    trueVector[0,:] = F
    trueVector[1,:] = F
    C = np.reshape(controlAxes_B, (numControlAxis, 3))
    CT = np.transpose(C)
    D = np.cross(rcsDirectionData,rcsLocationData-CoM_B)
    receivedTorque = -1.0*np.array([np.matmul(np.transpose(D), np.transpose(moduleOutput[0]))])
    receivedTorque = np.append(np.array([]), receivedTorque)
    Lr_offset = np.array([0.0, 0.0, 0.0])
    Lr_B = np.array([0.0, 0.0, 0.0])
    for i in range(0,numThrusters):
        if module.thrForceSign < 0 and module.thrForcMag[i] >= 0:
            Lr_offset -= module.thrForcMag[i]*np.cross(rcsLocationData[i,:]-CoM_B,rcsDirectionData[i,:]) # off pulsing
    Lr_B = requestedTorque + Lr_offset
    # This computes the requested torque direction and the received torque directions
    Lr_Req_B_Unit = Lr_B / np.linalg.norm(Lr_B)
    Lr_Rec_B_Unit = receivedTorque / np.linalg.norm(receivedTorque)
    # This is the requested and recieved torque projected onto the control axes
    Lr_Req_Bar_B = np.matmul(CT, np.matmul(C, Lr_B))
    Lr_Rec_Bar_B = np.matmul(CT, np.matmul(C, receivedTorque))
    # This computes the projected requested and received control torque directions
    Lr_Req_Bar_B_Unit = Lr_Req_Bar_B/np.linalg.norm(Lr_Req_Bar_B)
    Lr_Rec_Bar_B_Unit = Lr_Rec_Bar_B/np.linalg.norm(Lr_Rec_Bar_B)
    if np.linalg.norm(Lr_Rec_Bar_B) == 0.0:
        Lr_Rec_Bar_B_Unit = [0.0, 0.0, 0.0]
    accuracy = 1E-6
    # Check that Python Math and C Math are Identical
    testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([F]), np.array([moduleOutput[0]]), accuracy,
                                                                 "CompareForces",
                                                                 MAX_EFF_CNT, testFailCount, testMessages)
    # Checks to make sure that no forces are negative
    if not useDVThruster and np.any(moduleOutput[0] < 0):
        testFailCount += 1
        print("A negative force exists in the C RCS solution. This is not allowed!\n")
    if not useDVThruster and np.any(F < 0):
        testFailCount += 1
        print("A negative force exists in the Python RCS solution. This is not allowed!\n")
    if testFailCount > 0:
        return [testFailCount, ''.join(testMessages)]
    # Check that Torques are Sensible
    print("\nReq Lr_Bar [B]: " + str(Lr_Req_Bar_B))
    print("Rec Lr_Bar [B]: " + str(Lr_Rec_Bar_B))
    testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([Lr_Req_Bar_B_Unit]),
                                                                 np.array([Lr_Rec_Bar_B_Unit]), accuracy,
                                                                 "CompareTorques",
                                                                 3, testFailCount, testMessages)
    snippetName = "LrData_" + str(useDVThruster) + "_" + str(dropThruster) + "_" + str(numControlAxis) + "_" + str(useCOMOffset) + "____" + str(asymmetricDrop) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster)
    snippetTex = "DV Thrusters:\t" + str(useDVThruster) + "\n"
    snippetTex += "Number of Dropped Thrusters:\t" + str(dropThruster)+ "\n"
    snippetTex += "Number of Control Axes:\t" + str(numControlAxis) + "\n"
    snippetTex += "COM Offset:\t" + str(useCOMOffset) + "\n\n"
    snippetTex += "Was the drop asymmetric about the COM?\t" + str(asymmetricDrop) + "\n"
    snippetTex += "Number of Saturated Thrusters:\t" + str(saturateThrusters) + "\n"
    snippetTex += "Misconfigured Thruster?:\t" + str(misconfigThruster) + "\n\n"
    snippetTex += "Original [B]:\t" + str(requestedTorque) + "\n"
    snippetTex += "Requested (Original + Offset) [B]:\t" + str(Lr_B) + "\n"
    snippetTex += "Received [B]:\t\t" + str(receivedTorque) + "\n\n"
    snippetTex += "Requested Unit:\t\t" + str(Lr_Req_B_Unit) + "\n"
    snippetTex += "Received Unit:\t\t" + str(Lr_Rec_B_Unit) + "\n\n"
    snippetTex += "Requested On Control Axes (Original + Offset) [B]:\t" + str(Lr_Req_Bar_B) + "\n"
    snippetTex += "Received On Control Axes [B]:\t\t" + str(Lr_Rec_Bar_B) + "\n\n"
    snippetTex += "Requested On Control Axes Unit:\t\t" + str(Lr_Req_Bar_B_Unit) + "\n"
    snippetTex += "Received On Control Axes Unit:\t\t" + str(Lr_Rec_Bar_B_Unit) + "\n\n"
    snippetTex += "D-Matrix:\n" + str(D) + "\n\n"
    snippetTex += "Forces:\n" + str(np.transpose(F)) + "\n\n"
    directory = "Nom/UnitVec/"
    # Any solutions that dont have the correct torque, but do have the correct unit direction are called successful.
    if testFailCount > 0:
        unitTestSupport.writeTeXSnippet(directory+"Failed/"+snippetName, snippetTex, path)
        print("FAILED: " + module.ModelTag)
        testMessages.append("FAILED: " + module.ModelTag + " Module failed  unit test at t=" +
                            str(dataLog.times()[0] * macros.NANO2SEC) +
                            "sec\n")
    else:
        unitTestSupport.writeTeXSnippet(directory+"/Passed/" + snippetName, snippetTex, path)
        print("PASSED: " + module.ModelTag)
    unitTestSupport.writeTeXSnippet('toleranceValue', str(accuracy), path)
    snippentName = "passFail_" + str(useDVThruster) + "_" + str(useCOMOffset) + "_" + str(dropThruster) + "_" + str(
        numControlAxis) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster)
    if testFailCount == 0:
        colorText = 'ForestGreen'
        print("PASSED: " + module.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
    else:
        colorText = 'Red'
        print("Failed: " + module.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
    unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
    if testFailCount > 0:
        print("Python:\t " + str(F))
        print("C: \t:" + str(moduleOutput[0]))
    return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
    test_module(              # update "module" in function name
                 False,
                 False,           # useDVThruster
                 False,           # use COM offset
                 2,               # num drop thruster(s)
                 False,           # asymmetric drop
                 3,               # num control axis
                 2,               # saturateThrusters
                 False,           # misconfigThruster
                 False            # Use 2nd loop
    )