# ISC License
#
# Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#   Unit Test Script
#   Module Name:        spacecraftPointing
#   Author:             Simon van Overeem
#   Creation Date:      January 7, 2018
#
# The test that is performed in this file checks whether the spacecraftPointing module computes the correct output.
# The inputs of the test are five data points of the chief spacecraft and the deputy spacecraft. From these datapoints
# the orientation of the reference frame with respect to the inertial frame (sigma_R1N) is determined. Furthermore,
# the angular velocity (omega_RN_N) and the angular acceleration (domega_RN_N) are calculated. The outcomes are compared
# to the expected outcome of the module.
import inspect
import os
import pytest
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.fswAlgorithms import spacecraftPointing           # import the module that is to be tested
from Basilisk.utilities import macros
import numpy as np
from Basilisk.architecture import messaging
[docs]
@pytest.mark.parametrize("case", [
     (1)        # Regular alignment vector
    ,(2)        # Alignment vector aligns with the z-axis of the body frame
])
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
def test_spacecraftPointing(show_plots, case):
    """Module Unit Test"""
    # each test method requires a single assert method to be called
    [testResults, testMessage] = spacecraftPointingTestFunction(show_plots, case)
    assert testResults < 1, testMessage 
def spacecraftPointingTestFunction(show_plots, case):
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.1)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    module = spacecraftPointing.spacecraftPointing()
    module.ModelTag = "spacecraftPointing"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, module)
    # Initialize the test module configuration data
    module.alignmentVector_B = [1.0, 0.0, 0.0]
    if (case == 2):
        module.alignmentVector_B = [0.0, 0.0, 1.0]
    r_BN_N = [[np.cos(0.0), np.sin(0.0), 0.0],
              [np.cos(0.001), np.sin(0.001), 0.0],
              [np.cos(0.002), np.sin(0.002), 0.0],
              [np.cos(0.003), np.sin(0.003), 0.0],
              [np.cos(0.004), np.sin(0.004), 0.0]]
    r_BN_N2 = [[0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0]]
    # Create input message and size it because the regular creator of that message
    # is not part of the test.
    #
    #   Chief Input Message
    #
    chiefInputData = messaging.NavTransMsgPayload()  # Create a structure for the input message
    chiefInputData.r_BN_N = r_BN_N[0]
    chiefInMsg = messaging.NavTransMsg().write(chiefInputData)
    #
    #   Deputy Input Message
    #
    deputyInputData = messaging.NavTransMsgPayload()  # Create a structure for the input message
    deputyInputData.r_BN_N = r_BN_N2[0]
    deputyInMsg = messaging.NavTransMsg().write(deputyInputData)
    # Setup logging on the test module output message so that we get all the writes to it
    dataLog = module.attReferenceOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, dataLog)
    # connect messages
    module.chiefPositionInMsg.subscribeTo(chiefInMsg)
    module.deputyPositionInMsg.subscribeTo(deputyInMsg)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.1))        # seconds to stop simulation
    # Begin the simulation time run set above
    # Because it is decided to give the module a set of coordinates for each timestep, a new message has
    # to be send for each timestep.
    unitTestSim.ExecuteSimulation()
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.2))
    chiefInputData.r_BN_N = r_BN_N[1]
    chiefInMsg.write(chiefInputData)
    deputyInputData.r_BN_N = r_BN_N2[1]
    deputyInMsg.write(deputyInputData)
    unitTestSim.ExecuteSimulation()
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.3))
    chiefInputData.r_BN_N = r_BN_N[2]
    chiefInMsg.write(chiefInputData)
    deputyInputData.r_BN_N = r_BN_N2[2]
    deputyInMsg.write(deputyInputData)
    unitTestSim.ExecuteSimulation()
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.4))
    chiefInputData.r_BN_N = r_BN_N[3]
    chiefInMsg.write(chiefInputData)
    deputyInputData.r_BN_N = r_BN_N2[3]
    deputyInMsg.write(deputyInputData)
    unitTestSim.ExecuteSimulation()
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.5))
    chiefInputData.r_BN_N = r_BN_N[4]
    chiefInMsg.write(chiefInputData)
    deputyInputData.r_BN_N = r_BN_N2[4]
    deputyInMsg.write(deputyInputData)
    unitTestSim.ExecuteSimulation()
    if (case == 1):
        # This pulls the actual data log from the simulation run.
        # Note that range(3) will provide [0, 1, 2]  Those are the elements you get from the vector (all of them)
        #
        # check sigma_RN
        #
        moduleOutput = dataLog.sigma_RN
        # set the filtered output truth states
        trueVector = [
                   [0.,              0.,              0.0],
                   [0.,              0.,              0.0],
                   [0.,              0.,              0.0002500000052],
                   [0.,              0.,              0.0005000000417],
                   [0.,              0.,              0.0007500001406],
                   [0.,              0.,              0.001000000333]
                   ]
        # compare the module results to the truth values
        accuracy = 1e-12
        unitTestSupport.writeTeXSnippet("toleranceValue1", str(accuracy), path)
        for i in range(0,len(trueVector)):
            # check a vector values
            if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
                testFailCount += 1
                testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
                                    str(dataLog.times()[i]*macros.NANO2SEC) +
                                    "sec\n")
        #
        # check omega_RN_N
        #
        moduleOutput = dataLog.omega_RN_N
        # set the filtered output truth states
        trueVector = [
                   [0.,              0.,              0.0],
                   [0.,              0.,              0.0],
                   [0.,              0.,              0.01],
                   [0.,              0.,              0.01],
                   [0.,              0.,              0.01],
                   [0.,              0.,              0.01]
                   ]
        # compare the module results to the truth values
        # The first three values of the simulation have to be ignored for omega_RN_N. For this reason, comparing from index 3.
        accuracy = 1e-9
        unitTestSupport.writeTeXSnippet("toleranceValue2", str(accuracy), path)
        for i in range(0,len(trueVector)):
            # check a vector values
            if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
                testFailCount += 1
                testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" +
                                    str(dataLog.times()[i]*macros.NANO2SEC) +
                                    "sec\n")
        #
        # check domega_RN_N
        #
        moduleOutput = dataLog.domega_RN_N
        # set the filtered output truth states
        trueVector = [
                      [0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0]
                      ]
        # compare the module results to the truth values
        # The first three values of the simulation have to be ignored for domega_RN_N. For this reason, comparing from index 3.
        accuracy = 1e-12
        unitTestSupport.writeTeXSnippet("toleranceValue3", str(accuracy), path)
        for i in range(0,len(trueVector)):
            # check a vector values
            if not unitTestSupport.isArrayEqual(moduleOutput[i],trueVector[i],3,accuracy):
                testFailCount += 1
                testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
                                    str(dataLog.times()[i]*macros.NANO2SEC) +
                                    "sec\n")
    elif (case == 2):
        trueVector = [-1.0/3.0, 1.0/3.0, -1.0/3.0]
        # compare the module results to the truth values
        accuracy = 1e-12
        unitTestSupport.writeTeXSnippet("toleranceValue4", str(accuracy), path)
        # check a vector values
        if not unitTestSupport.isVectorEqual(np.array(module.sigma_BA), np.array(trueVector), accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed, sigma_BA is calculated incorrectly\n")
    #   print out success message if no error were found
    snippentName = "passFail" + str(case)
    if testFailCount == 0:
        colorText = 'ForestGreen'
        print("PASSED: " + module.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
    else:
        colorText = 'Red'
        print("FAILED: " + module.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
    unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
    # each test method requires a single assert method to be called
    # this check below just makes sure no sub-test failures were found
    return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
    test_spacecraftPointing(False, 1)