#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#
#   Unit Test Script
#   Module Name:        inertial3DSpin
#   Author:             Hanspeter Schaub
#   Creation Date:      January 6, 2016
#
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import inertial3DSpin  # import the module that is to be tested
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import macros as mc
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
#@pytest.mark.xfail(conditionstring)
# provide a unique test method name, starting with test_
[docs]
@pytest.mark.parametrize("function", ["subModuleTestFunction"
                                      , "subModuleTestFunction2"
                                      ])
def test_stateArchitectureAllTests(show_plots, function):
    """Module Unit Test"""
    [testResults, testMessage] = eval(function + '(show_plots)')
    assert testResults < 1, testMessage 
def subModuleTestFunction(show_plots):
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = mc.sec2nano(0.5)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    module = inertial3DSpin.inertial3DSpin()
    module.ModelTag = "inertial3DSpin"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, module)
    # Initialize the test module configuration data
    omega_RR0_R0 = np.array([1., -1., 0.5]) * mc.D2R
    module.omega_RR0_R0 = omega_RR0_R0
    #
    # Reference Frame Message
    #
    RefStateOutData = messaging.AttRefMsgPayload()  # Create a structure for the input message
    sigma_R0N = np.array([0.1, 0.2, 0.3])
    RefStateOutData.sigma_RN = sigma_R0N
    omega_R0N_N = np.array([0.0, 0.0, 0.0])
    RefStateOutData.omega_RN_N = omega_R0N_N
    domega_R0N_N = np.array([0.0, 0.0, 0.0])
    RefStateOutData.domega_RN_N = domega_R0N_N
    refStateMsg = messaging.AttRefMsg().write(RefStateOutData)
    # Setup logging on the test module output message so that we get all the writes to it
    moduleLog = module.attRefOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, moduleLog)
    # connect messages
    module.attRefInMsg.subscribeTo(refStateMsg)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(mc.sec2nano(1.5))        # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    #
    # check sigma_RN
    #
    trueVector = [
               [0.1, 0.2, 0.3],
               [0.1, 0.2, 0.3],
               [0.103643374814, 0.199258235068, 0.299694567381],
               [0.10728593457, 0.198511279747, 0.299381655572]
               ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0, len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleLog.sigma_RN[i], trueVector[i], 3, accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
                                str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n")
    #
    # check omega_RN_N
    #
    trueVector = [
        [0.02142849611, 0.01021197571, -0.011041933756],
        [0.02142849611, 0.01021197571, -0.011041933756],
        [0.02142849611, 0.01021197571, -0.011041933756],
        [0.021428270863,  0.010212299678, -0.011042071256]
    ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0,len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleLog.omega_RN_N[i], trueVector[i] , 3, accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N  unit test at t=" +
                                str(moduleLog.times()[i] * mc.NANO2SEC) + "sec\n")
    #
    # check domega_RN_N
    #
    trueVector = [
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0],
               [0.0, 0.0, 0.0]
               ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0,len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleLog.domega_RN_N[i], trueVector[i], 3, accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
                                str(moduleLog.times()[i] * mc.NANO2SEC) +"sec\n")
    # Note that we can continue to step the simulation however we feel like.
    # Just because we stop and query data does not mean everything has to stop for good
    unitTestSim.ConfigureStopTime(mc.sec2nano(0.6))    # run an additional 0.6 seconds
    unitTestSim.ExecuteSimulation()
    if testFailCount:
        print(testMessages)
    else:
        print("Passed")
    # each test method requires a single assert method to be called
    # this check below just makes sure no sub-test failures were found
    return [testFailCount, ''.join(testMessages)]
def subModuleTestFunction2(show_plots):
    testFailCount = 0  # zero unit test result counter
    testMessages = []  # create empty array to store test log messages
    unitTaskName = "unitTask"  # arbitrary name (don't change)
    unitProcessName = "TestProcess"  # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = mc.sec2nano(0.5)  # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    module = inertial3DSpin.inertial3DSpin()
    module.ModelTag = "inertial3DSpin"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, module)
    # Initialize the test module configuration data
    omega_RR0_R0 = np.array([1., -1., 0.5]) * mc.D2R
    module.omega_RR0_R0 = omega_RR0_R0
    # Create input message and size it because the regular creator of that message
    # is not part of the test.
    #
    # Reference Frame Message
    #
    RefStateOutData = messaging.AttRefMsgPayload()  # Create a structure for the input message
    sigma_R0N = np.array([0.1, 0.2, 0.3])
    RefStateOutData.sigma_RN = sigma_R0N
    omega_R0N_N = np.array([0.0, 0.0, 0.0])
    RefStateOutData.omega_RN_N = omega_R0N_N
    domega_R0N_N = np.array([0.0, 0.0, 0.0])
    RefStateOutData.domega_RN_N = domega_R0N_N
    refStateMsg = messaging.AttRefMsg().write(RefStateOutData)
    # Setup logging on the test module output message so that we get all the writes to it
    moduleLog = module.attRefOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, moduleLog)
    # connect messages
    module.attRefInMsg.subscribeTo(refStateMsg)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(mc.sec2nano(1.5))  # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    # This pulls the actual data log from the simulation run.
    # Note that range(3) will provide [0, 1, 2]  Those are the elements you get from the vector (all of them)
    #
    # check sigma_RN
    #
    # set the filtered output truth states
    trueVector = [
        [0.1, 0.2, 0.3],
        [0.1, 0.2, 0.3],
        [0.103643374814, 0.199258235068, 0.299694567381],
        [0.10728593457, 0.198511279747, 0.299381655572]
    ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0, len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleLog.sigma_RN[i], trueVector[i], 3, accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed sigma_RN unit test at t=" +
                                str(moduleLog.times()[i] * mc.NANO2SEC) +
                                "sec\n")
    #
    # check omega_RN_N
    #
    # set the filtered output truth states
    trueVector = [
        [0.02142849611, 0.01021197571, -0.011041933756],
        [0.02142849611, 0.01021197571, -0.011041933756],
        [0.02142849611, 0.01021197571, -0.011041933756],
        [0.021428270863, 0.010212299678, -0.011042071256]
    ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0, len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleLog.omega_RN_N[i], trueVector[i], 3, accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed omega_RN_N unit test at t=" +
                                str(moduleLog.times()[i] * mc.NANO2SEC) +
                                "sec\n")
    #
    # check domega_RN_N
    #
    # set the filtered output truth states
    trueVector = [
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0]
    ]
    # compare the module results to the truth values
    accuracy = 1e-12
    for i in range(0, len(trueVector)):
        # check a vector values
        if not unitTestSupport.isArrayEqual(moduleLog.domega_RN_N[i], trueVector[i], 3, accuracy):
            testFailCount += 1
            testMessages.append("FAILED: " + module.ModelTag + " Module failed domega_RN_N unit test at t=" +
                                str(moduleLog.times()[i] * mc.NANO2SEC) +
                                "sec\n")
    # Note that we can continue to step the simulation however we feel like.
    # Just because we stop and query data does not mean everything has to stop for good
    unitTestSim.ConfigureStopTime(mc.sec2nano(0.6))  # run an additional 0.6 seconds
    unitTestSim.ExecuteSimulation()
    if testFailCount:
        print(testMessages)
    else:
        print("Passed")
    # each test method requires a single assert method to be called
    # this check below just makes sure no sub-test failures were found
    return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
    # all_inertial3DSpin(False)
    subModuleTestFunction2(False)